NumbTh.h
1 /* Copyright (C) 2012-2020 IBM Corp.
2  * This program is Licensed under the Apache License, Version 2.0
3  * (the "License"); you may not use this file except in compliance
4  * with the License. You may obtain a copy of the License at
5  * http://www.apache.org/licenses/LICENSE-2.0
6  * Unless required by applicable law or agreed to in writing, software
7  * distributed under the License is distributed on an "AS IS" BASIS,
8  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
9  * See the License for the specific language governing permissions and
10  * limitations under the License. See accompanying LICENSE file.
11  */
12 #ifndef HELIB_NUMBTH_H
13 #define HELIB_NUMBTH_H
14 
18 #include <vector>
19 #include <set>
20 #include <cmath>
21 #include <complex>
22 #include <string>
23 #include <climits>
24 #include <cmath>
25 #include <iostream>
26 #include <fstream>
27 #include <sstream>
28 #include <ctime>
29 #include <memory>
30 
31 #include <NTL/version.h>
32 #include <NTL/ZZ.h>
33 #include <NTL/ZZX.h>
34 #include <NTL/ZZ_p.h>
35 #include <NTL/ZZ_pX.h>
36 #include <NTL/xdouble.h>
37 
38 #include <NTL/mat_GF2.h>
39 #include <NTL/mat_GF2E.h>
40 #include <NTL/GF2XFactoring.h>
41 
42 #include <NTL/mat_lzz_p.h>
43 #include <NTL/mat_lzz_pE.h>
44 #include <NTL/lzz_pXFactoring.h>
45 
46 #include <NTL/GF2EX.h>
47 #include <NTL/lzz_pEX.h>
48 
49 #include <NTL/FFT.h>
50 
51 // Test for the "right version" of NTL (currently 11.0.0)
52 #if (NTL_MAJOR_VERSION < 11)
53 #error "This version of HElib requires NTL version 11.0.0 or above"
54 #endif
55 
56 #include <helib/assertions.h>
57 #include <helib/apiAttributes.h>
58 
59 namespace helib {
60 
61 extern const long double PI;
62 
63 namespace FHEglobals {
68 extern bool dryRun;
69 
76 extern std::set<long>* automorphVals;
77 extern std::set<long>* automorphVals2;
78 
79 } // namespace FHEglobals
80 
81 inline bool setDryRun(bool toWhat = true)
82 {
83  return (FHEglobals::dryRun = toWhat);
84 }
85 
86 inline bool isDryRun() { return FHEglobals::dryRun; }
87 
88 inline void setAutomorphVals(std::set<long>* aVals)
89 {
91 }
92 
93 inline bool isSetAutomorphVals()
94 {
95  return FHEglobals::automorphVals != nullptr;
96 }
97 
98 inline void recordAutomorphVal(long k) { FHEglobals::automorphVals->insert(k); }
99 
100 inline void setAutomorphVals2(std::set<long>* aVals)
101 {
103 }
104 
105 inline bool isSetAutomorphVals2()
106 {
107  return FHEglobals::automorphVals2 != nullptr;
108 }
109 
110 inline void recordAutomorphVal2(long k)
111 {
112  FHEglobals::automorphVals2->insert(k);
113 }
114 
115 typedef long LONG; // using this to identify casts that we should
116  // really get rid of at some point in the future
117 
127 long bitSetToLong(long bits, long bitSize);
128 
133 
134 long mcMod(long a, long b);
135 long mcDiv(long a, long b);
136 
139 inline long balRem(long a, long q)
140 {
141  if (a > q / 2)
142  return a - q;
143  else
144  return a;
145 }
146 
148 inline double fsquare(double x) { return x * x; }
149 
151 long multOrd(long p, long m);
152 
161 void ppsolve(NTL::vec_zz_pE& x,
162  const NTL::mat_zz_pE& A,
163  const NTL::vec_zz_pE& b,
164  long p,
165  long r);
166 
168 void ppsolve(NTL::vec_GF2E& x,
169  const NTL::mat_GF2E& A,
170  const NTL::vec_GF2E& b,
171  long p,
172  long r);
173 
179 void ppInvert(NTL::mat_zz_p& X, const NTL::mat_zz_p& A, long p, long r);
180 void ppInvert(NTL::mat_zz_pE& X, const NTL::mat_zz_pE& A, long p, long r);
181 
182 // variants for GF2/GF2E to help with template code
183 inline void ppInvert(NTL::mat_GF2& X,
184  const NTL::mat_GF2& A,
185  UNUSED long p,
186  UNUSED long r)
187 {
188  NTL::inv(X, A);
189 }
190 
191 inline void ppInvert(NTL::mat_GF2E& X,
192  const NTL::mat_GF2E& A,
193  UNUSED long p,
194  UNUSED long r)
195 {
196  NTL::inv(X, A);
197 }
198 
199 void buildLinPolyMatrix(NTL::mat_zz_pE& M, long p);
200 void buildLinPolyMatrix(NTL::mat_GF2E& M, long p);
201 
209 void buildLinPolyCoeffs(NTL::vec_zz_pE& C,
210  const NTL::vec_zz_pE& L,
211  long p,
212  long r);
213 
215 void buildLinPolyCoeffs(NTL::vec_GF2E& C,
216  const NTL::vec_GF2E& L,
217  long p,
218  long r);
219 
224 void applyLinPoly(NTL::zz_pE& beta,
225  const NTL::vec_zz_pE& C,
226  const NTL::zz_pE& alpha,
227  long p);
228 
230 void applyLinPoly(NTL::GF2E& beta,
231  const NTL::vec_GF2E& C,
232  const NTL::GF2E& alpha,
233  long p);
234 
236 inline double log2(const NTL::xdouble& x) { return log(x) * 1.442695040889; }
237 
240 void factorize(std::vector<long>& factors, long N);
241 void factorize(std::vector<NTL::ZZ>& factors, const NTL::ZZ& N);
242 
245 void factorize(NTL::Vec<NTL::Pair<long, long>>& factors, long N);
246 
248 void pp_factorize(std::vector<long>& factors, long N);
249 
251 void phiN(long& phiN, std::vector<long>& facts, long N);
252 void phiN(NTL::ZZ& phiN, std::vector<NTL::ZZ>& facts, const NTL::ZZ& N);
253 
255 long phi_N(long N);
256 
259 long findGenerators(std::vector<long>& gens,
260  std::vector<long>& ords,
261  long m,
262  long p,
263  const std::vector<long>& candidates = std::vector<long>());
264 
266 void FindPrimitiveRoot(NTL::zz_p& r, unsigned long e);
267 void FindPrimitiveRoot(NTL::ZZ_p& r, unsigned long e);
268 
270 long mobius(long n);
271 
273 NTL::ZZX Cyclotomic(long N);
274 
276 NTL::ZZX makeIrredPoly(long p, long d);
277 
279 long primroot(long N, long phiN);
280 
282 long ord(long N, long p);
283 
284 inline bool is2power(long m)
285 {
286  long k = NTL::NextPowerOfTwo(m);
287  return (((unsigned long)m) == (1UL << k));
288 }
289 
290 // Returns a random mod p polynomial of degree < n
291 NTL::ZZX RandPoly(long n, const NTL::ZZ& p);
292 
294 
300 void PolyRed(NTL::ZZX& out, const NTL::ZZX& in, long q, bool abs = false);
301 void PolyRed(NTL::ZZX& out,
302  const NTL::ZZX& in,
303  const NTL::ZZ& q,
304  bool abs = false);
305 
306 inline void PolyRed(NTL::ZZX& F, long q, bool abs = false)
307 {
308  PolyRed(F, F, q, abs);
309 }
310 
311 inline void PolyRed(NTL::ZZX& F, const NTL::ZZ& q, bool abs = false)
312 {
313  PolyRed(F, F, q, abs);
314 }
315 
316 void vecRed(NTL::Vec<NTL::ZZ>& out,
317  const NTL::Vec<NTL::ZZ>& in,
318  long q,
319  bool abs);
320 
321 void vecRed(NTL::Vec<NTL::ZZ>& out,
322  const NTL::Vec<NTL::ZZ>& in,
323  const NTL::ZZ& q,
324  bool abs);
326 
327 // The interface has changed so that abs defaults to false,
328 // which is more consistent with the other interfaces.
329 // Calls without any explicit value for abs should generate a
330 // "deprecated" warning.
331 
332 void MulMod(NTL::ZZX& out, const NTL::ZZX& f, long a, long q, bool abs);
333 
334 [[deprecated("Please use MulMod with explicit abs argument.")]] inline void
335 MulMod(NTL::ZZX& out, const NTL::ZZX& f, long a, long q)
336 {
337  MulMod(out, f, a, q, false);
338 }
339 
340 inline NTL::ZZX MulMod(const NTL::ZZX& f, long a, long q, bool abs)
341 {
342  NTL::ZZX res;
343  MulMod(res, f, a, q, abs);
344  return res;
345 }
346 
347 [[deprecated("Please use MulMod with explicit abs argument.")]] inline NTL::ZZX
348 MulMod(const NTL::ZZX& f, long a, long q)
349 {
350  NTL::ZZX res;
351  MulMod(res, f, a, q, false);
352  return res;
353 }
354 
357 void balanced_MulMod(NTL::ZZX& out, const NTL::ZZX& f, long a, long q);
358 
361 inline void convert(long& x1, const NTL::GF2X& x2) { x1 = rep(ConstTerm(x2)); }
362 inline void convert(long& x1, const NTL::zz_pX& x2) { x1 = rep(ConstTerm(x2)); }
363 void convert(NTL::vec_zz_pE& X, const std::vector<NTL::ZZX>& A);
364 void convert(NTL::mat_zz_pE& X, const std::vector<std::vector<NTL::ZZX>>& A);
365 void convert(std::vector<NTL::ZZX>& X, const NTL::vec_zz_pE& A);
366 void convert(std::vector<std::vector<NTL::ZZX>>& X, const NTL::mat_zz_pE& A);
367 void convert(NTL::Vec<long>& out, const NTL::ZZX& in);
368 void convert(NTL::Vec<long>& out, const NTL::zz_pX& in, bool symmetric = true);
369 void convert(NTL::Vec<long>& out, const NTL::GF2X& in);
370 void convert(NTL::ZZX& out, const NTL::Vec<long>& in);
371 void convert(NTL::GF2X& out, const NTL::Vec<long>& in);
372 // right now, this is just a place-holder...it may or may not
373 // eventually be further fleshed out
374 
376 
378 template <typename T1, typename T2>
379 void convert(T1& x1, const T2& x2)
380 {
381  NTL::conv(x1, x2);
382 }
383 
385 template <typename T1, typename T2>
386 void convert(std::vector<T1>& v1, const std::vector<T2>& v2)
387 {
388  long n = v2.size();
389  v1.resize(n);
390  for (long i = 0; i < n; i++)
391  convert(v1[i], v2[i]);
392 }
393 
394 template <typename T1, typename T2>
395 void convert(std::vector<T1>& v1, const NTL::Vec<T2>& v2)
396 {
397  long n = v2.length();
398  v1.resize(n);
399  for (long i = 0; i < n; i++)
400  convert(v1[i], v2[i]);
401 }
402 
403 template <typename T1, typename T2>
404 void convert(NTL::Vec<T1>& v1, const std::vector<T2>& v2)
405 {
406  long n = v2.size();
407  v1.SetLength(n);
408  for (long i = 0; i < n; i++)
409  convert(v1[i], v2[i]);
410 }
411 
413 template <typename T>
414 void convert(std::vector<T>& v1, const std::vector<T>& v2)
415 {
416  v1 = v2;
417 }
418 
419 template <typename T1, typename T2>
420 T1 convert(const T2& v2)
421 {
422  T1 v1;
423  convert(v1, v2);
424  return v1;
425 }
426 
427 template <typename T>
428 std::vector<T> vector_replicate(const T& a, long n)
429 {
430  std::vector<T> res;
431  res.resize(n);
432  for (long i = 0; i < n; i++)
433  res[i] = a;
434  return res;
435 }
436 
437 template <typename T>
438 std::vector<T> Vec_replicate(const T& a, long n)
439 {
440  NTL::Vec<T> res;
441  res.SetLength(n);
442  for (long i = 0; i < n; i++)
443  res[i] = a;
444  return res;
445 }
446 
448 long computeProd(const NTL::Vec<long>& vec);
449 long computeProd(const std::vector<long>& vec);
450 
451 // some useful operations
452 void mul(std::vector<NTL::ZZX>& x, const std::vector<NTL::ZZX>& a, long b);
453 void div(std::vector<NTL::ZZX>& x, const std::vector<NTL::ZZX>& a, long b);
454 void add(std::vector<NTL::ZZX>& x,
455  const std::vector<NTL::ZZX>& a,
456  const std::vector<NTL::ZZX>& b);
457 
460 long is_in(long x, int* X, long sz);
461 
464 inline long CRTcoeff(long p, long q, bool symmetric = false)
465 {
466  long pInv = NTL::InvMod(p, q); // p^-1 mod q \in [0,q)
467  if (symmetric && 2 * pInv >= q)
468  return p * (pInv - q);
469  else
470  return p * pInv;
471 }
472 
487 template <class zzvec> // zzvec can be vec_NTL::ZZ, vec_long, or Vec<zz_p>
488 bool intVecCRT(NTL::vec_ZZ& vp, const NTL::ZZ& p, const zzvec& vq, long q);
489 
500 template <typename T, bool maxFlag>
501 long argminmax(std::vector<T>& v)
502 {
503  if (v.size() < 1)
504  return -1; // error: this is an empty array
505  unsigned long idx = 0;
506  T target = v[0];
507  for (unsigned long i = 1; i < v.size(); i++)
508  if (maxFlag) {
509  if (v[i] > target) {
510  target = v[i];
511  idx = i;
512  }
513  } else {
514  if (v[i] < target) {
515  target = v[i];
516  idx = i;
517  }
518  }
519  return (long)idx;
520 }
521 
522 template <typename T>
523 long argmax(std::vector<T>& v)
524 {
525  return argminmax<T, true>(v);
526 }
527 
528 template <typename T>
529 long argmin(std::vector<T>& v)
530 {
531  return argminmax<T, false>(v);
532 }
533 
536 inline long argmax(std::vector<long>& v, bool (*moreThan)(long, long))
537 {
538  if (v.size() < 1)
539  return -INT_MAX; // error: this is an empty array
540  unsigned long idx = 0;
541  long target = v[0];
542  for (unsigned long i = 1; i < v.size(); i++)
543  if ((*moreThan)(v[i], target)) {
544  target = v[i];
545  idx = i;
546  }
547  return (long)idx;
548 }
549 
550 // Check that x is in 1 += epsilon
551 inline bool closeToOne(const NTL::xdouble& x, long p)
552 {
553  double pinv = 1.0 / p;
554  return (x < (1.0 + pinv) && x > (1 - pinv));
555 }
556 
557 // Use continued fractions to approximate a float x as x ~ a/b
558 std::pair<long, long> rationalApprox(double x, long denomBound = 0);
559 std::pair<NTL::ZZ, NTL::ZZ> rationalApprox(
560  NTL::xdouble x,
561  NTL::xdouble denomBound = NTL::xdouble(0.0));
582 {
583 private:
584  NTL::ZZ state;
585  bool restored;
586 
587 public:
589  {
590  RandomBits(state, 512);
591  restored = false;
592  }
593 
595  void restore()
596  {
597  if (!restored) {
598  SetSeed(state);
599  restored = true;
600  }
601  }
602 
604 
605 private:
606  RandomState(const RandomState&); // disable copy constructor
607  RandomState& operator=(const RandomState&); // disable assignment
608 };
609 
612 void seekPastChar(std::istream& str, int cc);
613 
629 bool iterateInterestRegion(std::istream& str,
630  int begin_char,
631  int separator,
632  int end_char);
633 
655 std::vector<std::stringstream> extractTokenizeRegion(std::istream& istr,
656  char begin_char,
657  char end_char,
658  char separator,
659  bool skip_space = true);
660 
662 template <typename T>
663 void reverse(NTL::Vec<T>& v, long lo, long hi)
664 {
665  long n = v.length();
666  assertInRange(lo, 0l, hi, "Invalid argument: Bad interval", true);
667  assertTrue(hi < n, "Invalid argument: Interval exceeds vector size");
668 
669  if (lo >= hi)
670  return;
671 
672  for (long i = lo, j = hi; i < j; i++, j--)
673  swap(v[i], v[j]);
674 }
675 
677 // Example: rotate by 1 means [0 1 2 3] -> [3 0 1 2]
678 // rotate by -1 means [0 1 2 3] -> [1 2 3 0]
679 template <typename T>
680 void rotate(NTL::Vec<T>& v, long k)
681 {
682  long n = v.length();
683  if (n <= 1)
684  return;
685 
686  k %= n;
687  if (k < 0)
688  k += n;
689 
690  if (k == 0)
691  return;
692 
693  reverse(v, 0, n - 1);
694  reverse(v, 0, k - 1);
695  reverse(v, k, n - 1);
696 }
697 
698 // An experimental facility as it is annoying that vector::size() is an
699 // unsigned quantity. This leads to all kinds of annoying warning messages.
701 template <typename T>
702 inline long lsize(const std::vector<T>& v)
703 {
704  return (long)v.size();
705 }
706 
708 
709 // Utility functions, release memory of std::vector and NTL::Vec
710 template <typename T>
711 void killVec(std::vector<T>& vec)
712 {
713  std::vector<T>().swap(vec);
714 }
715 
716 template <typename T>
717 void killVec(NTL::Vec<T>& vec)
718 {
719  vec.kill();
720 }
721 
722 // Set length to zero, but don't necessarily release memory
723 template <typename T>
724 void setLengthZero(std::vector<T>& vec)
725 {
726  if (vec.size() > 0)
727  vec.resize(0, vec[0]);
728 }
729 
730 template <typename T>
731 void setLengthZero(NTL::Vec<T>& vec)
732 {
733  if (vec.length() > 0)
734  vec.SetLength(0, vec[0]);
735 }
736 
737 template <typename T>
738 inline long lsize(const NTL::Vec<T>& v)
739 {
740  return v.length();
741 }
742 
743 template <typename T>
744 void resize(NTL::Vec<T>& v, long sz, const T& val)
745 {
746  return v.SetLength(sz, val);
747 }
748 
749 template <typename T>
750 void resize(std::vector<T>& v, long sz, const T& val)
751 {
752  return v.resize(sz, val);
753 }
754 
755 template <typename T>
756 void resize(NTL::Vec<T>& v, long sz)
757 {
758  return v.SetLength(sz);
759 }
760 
761 template <typename T>
762 void resize(std::vector<T>& v, long sz)
763 {
764  return v.resize(sz);
765 }
766 
768 // Believe it or not, this is really the way to do it...
769 template <typename T1, typename T2>
770 bool sameObject(const T1* p1, const T2* p2)
771 {
772  return dynamic_cast<const void*>(p1) == dynamic_cast<const void*>(p2);
773 }
774 
776 void ModComp(NTL::ZZX& res,
777  const NTL::ZZX& g,
778  const NTL::ZZX& h,
779  const NTL::ZZX& f);
780 
782 long polyEvalMod(const NTL::ZZX& poly, long x, long p);
783 
786 void interpolateMod(NTL::ZZX& poly,
787  const NTL::vec_long& x,
788  const NTL::vec_long& y,
789  long p,
790  long e = 1);
791 
793 inline long divc(long a, long b) { return (a + b - 1) / b; }
794 
799 {
800 public:
801  long m;
802  NTL::zz_pX f;
803  long n;
804 
806 
807  long k, k1;
808  NTL::fftRep R0, R1;
809 
810  NTL::zz_pXModulus fm; // just in case...
811 
812  zz_pXModulus1(long _m, const NTL::zz_pX& _f);
813 
814  const NTL::zz_pXModulus& upcast() const { return fm; }
815 };
816 
817 void rem(NTL::zz_pX& r, const NTL::zz_pX& a, const zz_pXModulus1& ff);
818 
820 class ZZ_pXModulus1 : public NTL::ZZ_pXModulus
821 {
822 public:
823  ZZ_pXModulus1(UNUSED long _m, const NTL::ZZ_pX& _f) : NTL::ZZ_pXModulus(_f) {}
824  const NTL::ZZ_pXModulus& upcast() const { return *this; }
825 };
826 
827 template <typename T>
828 std::ostream& operator<<(std::ostream& s, std::vector<T> v)
829 {
830  if (v.size() == 0)
831  return (s << "[]");
832 
833  s << '[';
834  for (long i = 0; i < (long)v.size() - 1; i++)
835  s << v[i] << ' ';
836  return (s << v[v.size() - 1] << ']');
837 }
838 
839 template <typename T>
840 std::istream& operator>>(std::istream& s, std::vector<T>& v)
841 {
842  NTL::Vec<T> vv; // read into an NTL vector, then convert
843  s >> vv;
844  convert(v, vv);
845  return s;
846 }
847 
848 template <typename T>
849 std::string vecToStr(const std::vector<T>& v)
850 {
851  std::stringstream ss;
852  ss << v;
853  return ss.str();
854 }
855 
856 template <typename T>
857 NTL::Vec<T> atoVec(const char* a)
858 {
859  NTL::Vec<T> v;
860  std::string s(a);
861  std::stringstream ss(s);
862  ss >> v;
863  return v;
864 }
865 
866 template <typename T>
867 std::vector<T> atovector(const char* a)
868 {
869  NTL::Vec<T> v1 = atoVec<T>(a);
870  std::vector<T> v2;
871  convert(v2, v1);
872  return v2;
873 }
874 
875 #ifndef NTL_PROVIDES_TRUNC_FFT
876 // Define truncated FFT routines if not provided by NTL
877 inline void TofftRep_trunc(NTL::fftRep& y,
878  const NTL::zz_pX& x,
879  long k,
880  UNUSED long len,
881  long lo,
882  long hi)
883 {
884  TofftRep(y, x, k, lo, hi);
885 }
886 
887 inline void TofftRep_trunc(NTL::fftRep& y,
888  const NTL::zz_pX& x,
889  long k,
890  long len)
891 {
892  TofftRep_trunc(y, x, k, len, 0, deg(x));
893 }
894 #endif
895 
896 #if 0
897 template<typename T, typename... Args>
899 std::unique_ptr<T> build_unique(Args&&... args)
900 {
901  return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
902 }
903 #endif
904 
907 
908 inline double max_abs(const std::vector<std::complex<double>>& vec)
909 {
910  double res = 0;
911  for (auto x : vec) {
912  double t = std::abs(x);
913  if (res < t)
914  res = t;
915  }
916  return res;
917 }
918 
919 inline double max_abs(const std::vector<double>& vec)
920 {
921  double res = 0;
922  for (auto x : vec) {
923  double t = std::abs(x);
924  if (res < t)
925  res = t;
926  }
927  return res;
928 }
929 
933 template <typename T, typename P, typename... Args>
934 void make_lazy(const NTL::Lazy<T, P>& obj, Args&&... args)
935 {
936  typename NTL::Lazy<T, P>::Builder builder(obj);
937  if (!builder())
938  return;
939  NTL::UniquePtr<T, P> ptr;
940  ptr.make(std::forward<Args>(args)...);
941  builder.move(ptr);
942 }
943 
947 template <typename T, typename P, typename F, typename... Args>
948 void make_lazy_with_fun(const NTL::Lazy<T, P>& obj, F f, Args&&... args)
949 {
950  typename NTL::Lazy<T, P>::Builder builder(obj);
951  if (!builder())
952  return;
953  NTL::UniquePtr<T, P> ptr;
954  ptr.make();
955  f(*ptr, std::forward<Args>(args)...);
956  builder.move(ptr);
957 }
958 
959 // An array of inverse erfc values.
960 // erfc_inverse[i] = x means 2^{-i} = erfc(x/sqrt(2))
961 
962 const double erfc_inverse[] = {0,
963  0.6744897501960817432,
964  1.1503493803760081782,
965  1.5341205443525463117,
966  1.8627318674216514554,
967  2.1538746940614562129,
968  2.4175590162365050618,
969  2.6600674686174596585,
970  2.8856349124267571473,
971  3.0972690781987844623,
972  3.2971933456919633418,
973  3.4871041041144311068,
974  3.6683292851213230192,
975  3.8419306855019108708,
976  4.0087725941685849622,
977  4.1695693233491057549,
978  4.3249190408260462571,
979  4.4753284246542033544,
980  4.6212310014992471565,
981  4.7630010342678139569,
982  4.9009642079631930118};
983 
984 #define ERFC_INVERSE_SIZE (long(sizeof(erfc_inverse) / sizeof(erfc_inverse[0])))
985 
986 } // namespace helib
987 
988 #endif // ifndef HELIB_NUMBTH_H
void vecRed(NTL::Vec< NTL::ZZ > &out, const NTL::Vec< NTL::ZZ > &in, long q, bool abs)
Definition: NumbTh.cpp:781
bool closeToOne(const NTL::xdouble &x, long p)
Definition: NumbTh.h:551
void buildLinPolyCoeffs(NTL::vec_zz_pE &C, const NTL::vec_zz_pE &L, long p, long r)
Combination of buildLinPolyMatrix and ppsolve.
Definition: NumbTh.cpp:1622
void rotate(const EncryptedArray &ea, PlaintextArray &pa, long k)
Definition: EncryptedArray.cpp:760
NTL::ZZX RandPoly(long n, const NTL::ZZ &p)
Definition: NumbTh.cpp:707
long k1
Definition: NumbTh.h:807
void mul(const EncryptedArray &ea, PlaintextArray &pa, const PlaintextArray &other)
Definition: EncryptedArray.cpp:1061
long lsize(const std::vector< T > &v)
Size of STL vector as a long (rather than unsigned long)
Definition: NumbTh.h:702
void ModComp(NTL::ZZX &res, const NTL::ZZX &g, const NTL::ZZX &h, const NTL::ZZX &f)
Modular composition of polynomials: res = g(h) mod f.
Definition: NumbTh.cpp:940
long LONG
Definition: NumbTh.h:115
NTL::ZZX makeIrredPoly(long p, long d)
Return a degree-d irreducible polynomial mod p.
Definition: NumbTh.cpp:102
NTL::fftRep R0
Definition: NumbTh.h:808
NTL::fftRep R1
Definition: NumbTh.h:808
std::set< long > * automorphVals
A list of required automorphisms When non-nullptr, causes Ctxt::smartAutomorphism to just record the ...
Definition: Ctxt.cpp:49
void make_lazy_with_fun(const NTL::Lazy< T, P > &obj, F f, Args &&... args)
Definition: NumbTh.h:948
void assertTrue(const T &value, const std::string &message)
Definition: assertions.h:61
long is_in(long x, int *X, long sz)
Finds whether x is an element of the set X of size sz, Returns -1 it not and the location if true.
Definition: NumbTh.cpp:869
void PolyRed(NTL::ZZX &out, const NTL::ZZX &in, long q, bool abs=false)
Reduce all the coefficients of a polynomial modulo q.
Definition: NumbTh.cpp:751
long mobius(long n)
Compute mobius function (naive method as n is small).
Definition: NumbTh.cpp:502
std::vector< std::stringstream > extractTokenizeRegion(std::istream &istr, char begin_char, char end_char, char separator, bool skip_space=true)
Advance the input stream istr beyond white spaces. Then split the region delimited by begin_char and ...
Definition: NumbTh.cpp:1100
RandomState()
Definition: NumbTh.h:588
void factorize(std::vector< long > &factors, long N)
Factoring by trial division, only works for N<2^{60}, only the primes are recorded,...
Definition: NumbTh.cpp:155
long balRem(long a, long q)
Definition: NumbTh.h:139
void recordAutomorphVal2(long k)
Definition: NumbTh.h:110
void rem(NTL::zz_pX &r, const NTL::zz_pX &a, const zz_pXModulus1 &ff)
Definition: NumbTh.cpp:1875
~RandomState()
Definition: NumbTh.h:603
void setAutomorphVals(std::set< long > *aVals)
Definition: NumbTh.h:88
void ppInvert(NTL::mat_zz_p &X, const NTL::mat_zz_p &A, long p, long r)
Compute the inverse mod p^r of an n x n matrix.
Definition: NumbTh.cpp:1566
NTL::zz_pX f
Definition: NumbTh.h:802
void assertInRange(const T &elem, const T &min, const T &max, const std::string &message, bool right_inclusive=false)
Definition: assertions.h:183
long divc(long a, long b)
returns ceiling(a/b); assumes a >=0, b>0, a+b <= MAX_LONG
Definition: NumbTh.h:793
void killVec(std::vector< T > &vec)
NTL/std compatibility.
Definition: NumbTh.h:711
long computeProd(const NTL::Vec< long > &vec)
returns \prod_d vec[d]
Definition: NumbTh.cpp:92
const double erfc_inverse[]
Definition: NumbTh.h:962
std::pair< long, long > rationalApprox(double x, long denomBound=0)
Definition: NumbTh.cpp:1709
long primroot(long N, long phiN)
Find a primitive root modulo N.
Definition: NumbTh.cpp:673
long ord(long N, long p)
Compute the highest power of p that divides N.
Definition: NumbTh.cpp:697
long argminmax(std::vector< T > &v)
Find the index of the (first) largest/smallest element.
Definition: NumbTh.h:501
long mcMod(long a, long b)
Routines for computing mathematically correct mod and div.
Definition: NumbTh.cpp:45
long bitSetToLong(long bits, long bitSize)
Considers bits as a vector of bits and returns the value it represents when interpreted as a n-bit 2'...
Definition: NumbTh.cpp:32
void div(std::vector< NTL::ZZX > &x, const std::vector< NTL::ZZX > &a, long b)
Definition: NumbTh.cpp:1338
void setAutomorphVals2(std::set< long > *aVals)
Definition: NumbTh.h:100
bool setDryRun(bool toWhat=true)
Definition: NumbTh.h:81
bool isSetAutomorphVals2()
Definition: NumbTh.h:105
const NTL::zz_pXModulus & upcast() const
Definition: NumbTh.h:814
void interpolateMod(NTL::ZZX &poly, const NTL::vec_long &x, const NTL::vec_long &y, long p, long e=1)
Interpolate polynomial such that poly(x[i] mod p)=y[i] (mod p^e) It is assumed that the points x[i] a...
Definition: NumbTh.cpp:1019
const NTL::ZZ_pXModulus & upcast() const
Definition: NumbTh.h:824
std::vector< T > vector_replicate(const T &a, long n)
Definition: NumbTh.h:428
std::string vecToStr(const std::vector< T > &v)
Definition: NumbTh.h:849
long n
Definition: NumbTh.h:803
bool intVecCRT(NTL::vec_ZZ &vp, const NTL::ZZ &p, const zzvec &vq, long q)
Incremental integer CRT for vectors.
Definition: NumbTh.cpp:894
void MulMod(NTL::ZZX &out, const NTL::ZZX &f, long a, long q, bool abs)
Definition: NumbTh.cpp:831
void setLengthZero(std::vector< T > &vec)
Definition: NumbTh.h:724
NTL::Vec< T > atoVec(const char *a)
Definition: NumbTh.h:857
long phi_N(long N)
Compute Phi(N).
Definition: NumbTh.cpp:235
void resize(NTL::Vec< T > &v, long sz, const T &val)
Definition: NumbTh.h:744
Auxiliary classes to facilitate faster reduction mod Phi_m(X) when the input has degree less than m.
Definition: NumbTh.h:799
void make_lazy(const NTL::Lazy< T, P > &obj, Args &&... args)
Definition: NumbTh.h:934
long mcDiv(long a, long b)
Definition: NumbTh.cpp:55
Definition: apiAttributes.h:21
void phiN(long &phiN, std::vector< long > &facts, long N)
Compute Phi(N) and also factorize N.
Definition: NumbTh.cpp:228
void ppsolve(NTL::vec_zz_pE &x, const NTL::mat_zz_pE &A, const NTL::vec_zz_pE &b, long p, long r)
Prime power solver.
Definition: NumbTh.cpp:1362
void restore()
Restore the PRG state of NTL.
Definition: NumbTh.h:595
zz_pXModulus1(long _m, const NTL::zz_pX &_f)
Definition: NumbTh.cpp:1849
bool isDryRun()
Definition: NumbTh.h:86
void balanced_MulMod(NTL::ZZX &out, const NTL::ZZX &f, long a, long q)
Definition: NumbTh.cpp:852
long multOrd(long p, long m)
Return multiplicative order of p modulo m, or 0 if GCD(p, m) != 1.
Definition: NumbTh.cpp:68
bool sameObject(const T1 *p1, const T2 *p2)
Testing if two vectors point to the same object.
Definition: NumbTh.h:770
double log2(const NTL::xdouble &x)
Base-2 logarithm.
Definition: NumbTh.h:236
std::ostream & operator<<(std::ostream &s, const SKHandle &handle)
Definition: Ctxt.h:190
void seekPastChar(std::istream &str, int cc)
Advance the input stream beyond white spaces and a single instance of the char cc.
Definition: NumbTh.cpp:1048
Facility for "restoring" the NTL PRG state.
Definition: NumbTh.h:582
const long double PI
Definition: NumbTh.cpp:24
void pp_factorize(std::vector< long > &factors, long N)
Prime-power factorization.
Definition: NumbTh.cpp:203
long argmax(std::vector< T > &v)
Definition: NumbTh.h:523
std::vector< T > atovector(const char *a)
Definition: NumbTh.h:867
bool dryRun
A dry-run flag The dry-run option disables most operations, to save time. This lets us quickly go ove...
Definition: NumbTh.cpp:27
long argmin(std::vector< T > &v)
Definition: NumbTh.h:529
void FindPrimitiveRoot(NTL::zz_p &r, unsigned long e)
Find e-th root of unity modulo the current modulus.
Definition: NumbTh.cpp:492
long k
Definition: NumbTh.h:807
void applyLinPoly(NTL::zz_pE &beta, const NTL::vec_zz_pE &C, const NTL::zz_pE &alpha, long p)
Apply a linearized polynomial with coefficient vector C.
Definition: NumbTh.cpp:1662
long m
Definition: NumbTh.h:801
long CRTcoeff(long p, long q, bool symmetric=false)
Returns a CRT coefficient: x = (0 mod p, 1 mod q). If symmetric is set then x \in [-pq/2,...
Definition: NumbTh.h:464
NTL::zz_pXModulus fm
Definition: NumbTh.h:810
NTL::ZZX Cyclotomic(long N)
Compute cyclotomic polynomial.
Definition: NumbTh.cpp:531
void add(const EncryptedArray &ea, PlaintextArray &pa, const PlaintextArray &other)
Definition: EncryptedArray.cpp:1005
double fsquare(double x)
Return the square of a number as a double.
Definition: NumbTh.h:148
double max_abs(const std::vector< std::complex< double >> &vec)
Definition: NumbTh.h:908
void swap(cloned_ptr< X, Cloner > &x, cloned_ptr< X, Cloner > &y)
Definition: clonedPtr.h:170
void TofftRep_trunc(NTL::fftRep &y, const NTL::zz_pX &x, long k, UNUSED long len, long lo, long hi)
Definition: NumbTh.h:877
std::set< long > * automorphVals2
Definition: Ctxt.cpp:50
bool isSetAutomorphVals()
Definition: NumbTh.h:93
bool specialLogic
Definition: NumbTh.h:805
void buildLinPolyMatrix(NTL::mat_zz_pE &M, long p)
Definition: NumbTh.cpp:1207
placeholder for pXModulus ...no optimizations
Definition: NumbTh.h:821
bool iterateInterestRegion(std::istream &str, int begin_char, int separator, int end_char)
Advance the input stream str beyond white spaces and a single separator in the region-of-interest del...
Definition: NumbTh.cpp:1066
std::istream & operator>>(std::istream &s, CtxtPart &p)
Definition: Ctxt.cpp:2206
void convert(long &x1, const NTL::GF2X &x2)
Definition: NumbTh.h:361
long polyEvalMod(const NTL::ZZX &poly, long x, long p)
Evaluates a modular integer polynomial, returns poly(x) mod p.
Definition: NumbTh.cpp:958
ZZ_pXModulus1(UNUSED long _m, const NTL::ZZ_pX &_f)
Definition: NumbTh.h:823
std::vector< T > Vec_replicate(const T &a, long n)
Definition: NumbTh.h:438
void reverse(NTL::Vec< T > &v, long lo, long hi)
Reverse a vector in place.
Definition: NumbTh.h:663
bool is2power(long m)
Definition: NumbTh.h:284
long findGenerators(std::vector< long > &gens, std::vector< long > &ords, long m, long p, const std::vector< long > &candidates=std::vector< long >())
Definition: NumbTh.cpp:342
void recordAutomorphVal(long k)
Definition: NumbTh.h:98