helib Namespace Reference

Namespaces

 FHEglobals
 

Classes

class  add_pa_impl
 
class  AddDAG
 A class representing the logic of the order of bit products when adding two integers. More...
 
class  And
 An object representing the logical AND expression which inherits from Expr. More...
 
class  applyPerm_pa_impl
 
class  ArgMap
 Basic class for arg parsing. Example use: More...
 
class  BasicAutomorphPrecon
 Pre-computation to speed many automorphism on the same ciphertext. More...
 
struct  BGV
 Type for BGV scheme, to be used as template parameter. More...
 
class  BipartitleGraph
 A bipartite flow graph. More...
 
class  BlockMatMul1D
 
class  BlockMatMul1D_derived
 
struct  BlockMatMul1D_derived_impl
 
class  BlockMatMul1D_partial
 
class  BlockMatMul1DExec
 
struct  BlockMatMul1DExec_construct
 
class  BlockMatMulFull
 
class  BlockMatMulFull_derived
 
class  BlockMatMulFullExec
 
struct  BlockMatMulFullExec_construct
 
class  BlockMatMulFullHelper
 
struct  CKKS
 Type for CKKS scheme, to be used as template parameter. More...
 
class  Cmodulus
 Provides FFT and iFFT routines modulo a single-precision prime. More...
 
class  ColNumber
 An object representing a column of a database as an expression which inherits from Expr. More...
 
class  ColPerm
 Permuting a single dimension (column) of a hypercube. More...
 
class  ConstCubeSlice
 A constant lower-dimension slice of a hypercube. More...
 
struct  ConstMultiplier
 
struct  ConstMultiplier_DoubleCRT
 
struct  ConstMultiplier_DoubleCRT_CKKS
 
struct  ConstMultiplier_zzX
 
struct  ConstMultiplier_zzX_CKKS
 
struct  ConstMultiplierCache
 
class  Context
 Maintaining the parameters. More...
 
class  Ctxt
 A Ctxt object holds a single ciphertext. More...
 
class  CtxtPart
 One entry in a ciphertext std::vector. More...
 
class  CubeSignature
 Holds a vector of dimensions for a hypercube and some additional data. More...
 
class  CubeSlice
 A lower-dimension slice of a hypercube. More...
 
class  DAGnode
 A node in an addition-DAG structure. More...
 
class  Database
 An object representing a database which is a HElib::Matrix<TXT>. More...
 
class  decode_pa_impl
 
class  deep_clone
 Deep copy: initialize with clone. More...
 
class  DoubleCRT
 Implementing polynomials (elements in the ring R_Q) in double-CRT form. More...
 
class  DoubleCRTHelper
 A helper class to enforce consistency within an DoubleCRTHelper object. More...
 
class  DynamicCtxtPowers
 Store powers of X, compute them dynamically as needed. More...
 
class  encode_pa_impl
 
class  EncryptedArray
 A simple wrapper for a smart pointer to an EncryptedArrayBase. This is the interface that higher-level code should use. More...
 
class  EncryptedArrayBase
 virtual class for data-movement operations on arrays of slots More...
 
class  EncryptedArrayCx
 A different derived class to be used for the approximate-numbers scheme. More...
 
class  EncryptedArrayDerived
 Derived concrete implementation of EncryptedArrayBase. More...
 
class  equals_pa_impl
 
class  EvalMap
 Class that provides the functionality for the linear transforms used in boostrapping. The constructor is invoked with three arguments: More...
 
class  Exception
 Base class that other HElib exception classes inherit from. More...
 
class  ExplicitReplicator
 An implementation of ReplicateHandler that explicitly returns all the replicated ciphertexts in one big vector. More...
 
struct  Expr
 Base structure for logical expressions. More...
 
struct  fhe_stats_record
 
class  FHEtimer
 A simple class to accumulate time. More...
 
class  FlowEdge
 An edge in a flow graph. More...
 
class  frobeniusAutomorph_pa_impl
 
class  FullBinaryTree
 A simple implementation of full binary trees (each non-leaf has 2 children) More...
 
class  GenDescriptor
 A minimal description of a generator for the purpose of building tree. More...
 
class  general_range
 
class  GeneralAutomorphPrecon
 
class  GeneralAutomorphPrecon_BSGS
 
class  GeneralAutomorphPrecon_FULL
 
class  GeneralAutomorphPrecon_UNKNOWN
 
class  GeneralBenesNetwork
 Implementation of generalized Benes Permutation Network. More...
 
class  GeneratorTrees
 A std::vector of generator trees, one per generator in Zm*‍/(p) More...
 
struct  half_FFT
 
class  HyperCube
 A multi-dimensional cube. More...
 
class  IndexMap
 IndexMap<T> implements a generic map indexed by a dynamic index set. More...
 
class  IndexMapInit
 Initializing elements in an IndexMap. More...
 
class  IndexSet
 A dynamic set of non-negative integers. More...
 
class  InvalidArgument
 Inherits from Exception and std::invalid_argument. More...
 
class  IOError
 Inherits from Exception and std::runtime_error. More...
 
class  KeySwitch
 Key-switching matrices. More...
 
class  LabeledEdge
 A generic directed edge in a graph with some labels. More...
 
class  LabeledVertex
 A generic node in a graph with some labels. More...
 
class  Logger
 Logger class that handles warning printouts. More...
 
class  LogicError
 Inherits from Exception and std::logic_error. More...
 
class  MappingData
 Auxiliary structure to support encoding/decoding slots. More...
 
class  MatMul1D
 
class  MatMul1D_CKKS
 
class  MatMul1D_derived
 
struct  MatMul1D_derived_impl
 
class  MatMul1D_partial
 
class  MatMul1DExec
 
struct  MatMul1DExec_construct
 
class  MatMulExecBase
 
class  MatMulFull
 
class  MatMulFull_derived
 
class  MatMulFullExec
 
struct  MatMulFullExec_construct
 
class  MatMulFullHelper
 
class  MatrixView
 
class  ModuliSizes
 A helper class to map required modulo-sizes to primeSets. More...
 
struct  mul_BlockMatMul1D_impl
 
struct  mul_BlockMatMulFull_impl
 
struct  mul_MatMul1D_impl
 
struct  mul_MatMulFull_impl
 
class  mul_pa_impl
 
class  negate_pa_impl
 
class  Or
 An object representing the logical OR expression which inherits from Expr. More...
 
class  OutOfRangeError
 Inherits from Exception and std::out_of_range. More...
 
class  PAlgebra
 The structure of (Z/mZ)* /(p) More...
 
class  PAlgebraMod
 The structure of Z[X]/(Phi_m(X), p) More...
 
class  PAlgebraModBase
 Virtual base class for PAlgebraMod. More...
 
class  PAlgebraModCx
 
class  PAlgebraModDerived
 A concrete instantiation of the virtual class. More...
 
class  PermNetLayer
 The information needed to apply one layer of a permutation network. More...
 
class  PermNetwork
 A full permutation network. More...
 
class  PGFFT
 
class  PlaintextArray
 
class  PlaintextArrayBase
 
class  PlaintextArrayDerived
 
class  PolyMod
 An object that contains an NTL::ZZX polynomial along with a coefficient modulus p2r and a polynomial modulus G. More...
 
struct  PolyModRing
 Lightweight type for describing the structure of a single slot of the plaintext space. More...
 
class  PowerfulConversion
 Conversion between powerful representation in R_m/(q) and zz_pX. More...
 
class  PowerfulDCRT
 Conversion between powerful representation, DoubleCRT, and ZZX. More...
 
class  PowerfulTranslationIndexes
 Holds index tables for translation between powerful and zz_pX. More...
 
struct  PrimeGenerator
 
class  print_pa_impl
 
struct  PtrMatrix
 An abstract class for an array of PtrVectors. More...
 
struct  PtrMatrix_PtPtrVector
 An implementation of PtrMatrix using vector< PtrVector<T>* > More...
 
struct  PtrMatrix_ptVec
 An implementation of PtrMatrix using Vec< Vec<T>* > More...
 
struct  PtrMatrix_ptvector
 An implementation of PtrMatrix using vector< vector<T>* > More...
 
struct  PtrMatrix_Vec
 An implementation of PtrMatrix using Vec< Vec<T> > More...
 
struct  PtrMatrix_vector
 An implementation of PtrMatrix using vector< vector<T> > More...
 
struct  PtrVector
 Abstract class for an array of objects. More...
 
struct  PtrVector_Singleton
 An implementation of PtrVector from a single T object. More...
 
struct  PtrVector_slice
 An implementation of PtrVector as a slice of another PtrVector. More...
 
struct  PtrVector_VecPt
 An implementation of PtrVector using Vec<T*> More...
 
struct  PtrVector_VecT
 An implementation of PtrVector using Vec<T> More...
 
struct  PtrVector_vectorPt
 An implementation of PtrVector using vector<T*> More...
 
struct  PtrVector_vectorT
 An implementation of PtrVector using vector<T> More...
 
class  Ptxt
 An object that mimics the functionality of the Ctxt object, and acts as a convenient entry point for inputting/encoding data which is to be encrypted. More...
 
class  PubKey
 The public key. More...
 
struct  PubKeyHack
 
struct  quarter_FFT
 
struct  Query_t
 Structure containing all information required for an HE query. More...
 
class  QueryBuilder
 An object used to construct a Query_t object from a logical expression. More...
 
class  random_pa_impl
 
class  RandomBlockMatrix
 
class  RandomFullBlockMatrix
 
class  RandomFullMatrix
 
class  RandomMatrix
 
class  RandomMultiBlockMatrix
 
class  RandomMultiMatrix
 
class  RandomState
 Facility for "restoring" the NTL PRG state. More...
 
class  RecryptData
 A structure to hold recryption-related data inside the Context. More...
 
class  replicate_pa_impl
 
class  ReplicateHandler
 An abstract class to handle call-backs to get the output of replicate. More...
 
class  rotate_pa_impl
 
class  RuntimeError
 Inherits from Exception and std::runtime_error. More...
 
class  ScratchCell
 A class to help manage the allocation of temporary Ctxt objects. More...
 
class  SecKey
 The secret key. More...
 
class  shallow_clone
 Shallow copy: initialize with copy constructor. More...
 
class  shift_pa_impl
 
class  SKHandle
 A handle, describing the secret-key element that "matches" a part, of the form s^r(X^t). More...
 
class  sub_pa_impl
 
class  SubDimension
 A node in a tree relative to some generator. More...
 
class  SumRegister
 Class to do a binary tree summation as results appear to keep memory usage to a minimum. More...
 
class  Tensor
 
struct  TensorSlice
 
class  ThinEvalMap
 Class that provides the functionality for the linear transforms used in "thin" boostrapping, where slots are assumed to contain constants. The interface is exactly the same as for EvalMap, except that the constructor does not have a normal_basis parameter. More...
 
class  ThinRecryptData
 Same as above, but for "thin" bootstrapping, where the slots are assumed to contain constants. More...
 
class  TreeNode
 A node in a full binary tree. More...
 
class  version
 The class acts as a namespace with all members static. Holds the version number for this code of HElib. More...
 
class  zz_pXModulus1
 Auxiliary classes to facilitate faster reduction mod Phi_m(X) when the input has degree less than m. More...
 
class  ZZ_pXModulus1
 placeholder for pXModulus ...no optimizations More...
 

Typedefs

typedef PtrVector< CtxtCtPtrs
 
typedef PtrVector_VecT< CtxtCtPtrs_VecCt
 
typedef PtrVector_vectorT< CtxtCtPtrs_vectorCt
 
typedef PtrVector_VecPt< CtxtCtPtrs_VecPt
 
typedef PtrVector_vectorPt< CtxtCtPtrs_vectorPt
 
typedef PtrVector_slice< CtxtCtPtrs_slice
 
typedef PtrMatrix< CtxtCtPtrMat
 
typedef PtrMatrix_Vec< CtxtCtPtrMat_VecCt
 
typedef PtrMatrix_vector< CtxtCtPtrMat_vectorCt
 
typedef PtrMatrix_ptVec< CtxtCtPtrMat_ptVecCt
 
typedef PtrMatrix_ptvector< CtxtCtPtrMat_ptvectorCt
 
typedef std::shared_ptr< DoubleCRTDCRTptr
 
typedef std::shared_ptr< NTL::ZZX > ZZXptr
 
typedef std::complex< double > cx_double
 
typedef std::unordered_map< long, FlowEdgeFNeighborList
 
typedef std::vector< FNeighborListFlowGraph
 
typedef std::unordered_multimap< long, LabeledEdgeLNeighborList
 
template<typename T >
using Vector = Tensor< T, 1 >
 
template<typename T >
using Matrix = Tensor< T, 2 >
 
typedef long LONG
 
using QueryExpr = std::shared_ptr< Expr >
 An alias for a shared pointer to an Expr object. More...
 
typedef NTL::Vec< long > Permut
 A simple permutation is just a vector with p[i]=\pi_i. More...
 
typedef FullBinaryTree< SubDimensionOneGeneratorTree
 
typedef NTL::Vec< long > zzX
 
typedef std::pair< long, long > NodeIdx
 
template<class T >
using aligned_vector = PGFFT::aligned_vector< T >
 
typedef complex< double > cmplx_t
 
typedef long double ldbl
 

Enumerations

enum  PA_tag { PA_GF2_tag, PA_zz_p_tag, PA_cx_tag }
 

Functions

template<typename ExceptionTy = ::helib::LogicError, typename T = void>
void assertTrue (const T &value, const std::string &message)
 
template<typename ExceptionTy = ::helib::LogicError, typename T = void>
void assertFalse (T value, const std::string &message)
 
template<typename ExceptionTy = ::helib::LogicError, typename T = void>
void assertEq (const T &a, const T &b, const std::string &message)
 
template<typename ExceptionTy = ::helib::LogicError, typename T = void>
void assertNeq (const T &a, const T &b, const std::string &message)
 
template<typename ExceptionTy = ::helib::LogicError, typename T = void>
void assertNotNull (const T &p, const std::string &message)
 
template<typename ExceptionTy = ::helib::OutOfRangeError, typename T = void>
void assertInRange (const T &elem, const T &min, const T &max, const std::string &message, bool right_inclusive=false)
 
std::vector< long > longToBitVector (long num, long bitSize)
 Returns a number as a vector of bits with LSB on the left. More...
 
void binaryCond (CtPtrs &output, const Ctxt &cond, const CtPtrs &trueValue, const CtPtrs &falseValue)
 Implementation of output = cond * trueValue + (1 - cond) * falseValue. More...
 
void binaryMask (CtPtrs &binaryNums, const Ctxt &mask)
 Zeroes the slots of binaryNums where the corresponding slot of mask is 0. More...
 
void concatBinaryNums (CtPtrs &output, const CtPtrs &a, const CtPtrs &b)
 Concatenates two binary numbers into a single CtPtrs object. E.g. If a=10111, b=00101 then output = 1011100101. More...
 
void splitBinaryNums (CtPtrs &leftSplit, CtPtrs &rightSplit, const CtPtrs &input)
 Splits a single binary number into two binary numbers leftSplit and rightSplit. More...
 
void leftBitwiseShift (CtPtrs &output, const CtPtrs &input, const long shamt)
 Left shift input by shamt. More...
 
void bitwiseRotate (CtPtrs &output, const CtPtrs &input, long rotamt)
 Rotate input by rotamt. More...
 
void bitwiseXOR (CtPtrs &output, const CtPtrs &lhs, const CtPtrs &rhs)
 Compute a bitwise XOR between lhs and rhs. More...
 
void bitwiseOr (CtPtrs &output, const CtPtrs &lhs, const CtPtrs &rhs)
 Compute a bitwise OR between lhs and rhs. More...
 
void bitwiseAnd (CtPtrs &output, const CtPtrs &lhs, const CtPtrs &rhs)
 Compute a bitwise AND between lhs and rhs. More...
 
void bitwiseAnd (CtPtrs &output, const CtPtrs &input, const std::vector< long > mask)
 Compute a bitwise AND between input and a std::vector<long>. More...
 
void bitwiseNot (CtPtrs &output, const CtPtrs &input)
 Compute a bitwise NOT of input. More...
 
void addTwoNumbers (CtPtrs &sum, const CtPtrs &lhs, const CtPtrs &rhs, long sizeLimit=0, std::vector< zzX > *unpackSlotEncoding=nullptr)
 Adds two numbers in binary representation where each ciphertext of the input vector contains a bit. More...
 
void negateBinary (CtPtrs &negation, const CtPtrs &input)
 Negates a number in binary 2's complement representation. More...
 
void subtractBinary (CtPtrs &difference, const CtPtrs &lhs, const CtPtrs &rhs, std::vector< zzX > *unpackSlotEncoding=nullptr)
 Subtracts rhs from lhs where lhs, rhs are in 2's complement. More...
 
long fifteenOrLess4Four (const CtPtrs &out, const CtPtrs &in, long sizeLimit=4)
 Add together up to fifteen {0,1} integers, producing a 4-bit counter. More...
 
void addManyNumbers (CtPtrs &sum, CtPtrMat &numbers, long sizeLimit=0, std::vector< zzX > *unpackSlotEncoding=nullptr)
 Sum an arbitrary amount of numbers in binary representation. More...
 
void multTwoNumbers (CtPtrs &product, const CtPtrs &lhs, const CtPtrs &rhs, bool rhsTwosComplement=false, long sizeLimit=0, std::vector< zzX > *unpackSlotEncoding=nullptr)
 Multiply two numbers in binary representation where each ciphertext of the input vector contains a bit. More...
 
void decryptBinaryNums (std::vector< long > &pNums, const CtPtrs &eNums, const SecKey &sKey, const EncryptedArray &ea, bool twosComplement=false, bool allSlots=true)
 Decrypt the binary numbers that are encrypted in eNums. More...
 
void packedRecrypt (const CtPtrs &a, const CtPtrs &b, std::vector< zzX > *unpackSlotEncoding)
 Function for packed recryption to recrypt multiple numbers. More...
 
void compareTwoNumbers (CtPtrs &max, CtPtrs &min, Ctxt &mu, Ctxt &ni, const CtPtrs &a, const CtPtrs &b, bool twosComplement=false, std::vector< zzX > *unpackSlotEncoding=nullptr)
 Compares two integers in binary a, b. Returns max(a, b), min(a, b) and indicator bits mu=(a>b) and ni=(a<b) More...
 
void compareTwoNumbers (Ctxt &mu, Ctxt &ni, const CtPtrs &a, const CtPtrs &b, bool twosComplement=false, std::vector< zzX > *unpackSlotEncoding=nullptr)
 Compares two integers in binary a, b. Returns only indicator bits mu=(a>b) and ni=(a<b). More...
 
int readEyeCatcher (std::istream &str, const char *expect)
 
void writeEyeCatcher (std::ostream &str, const char *eye)
 
void write_ntl_vec_long (std::ostream &str, const NTL::vec_long &vl, long intSize=BINIO_64BIT)
 
void read_ntl_vec_long (std::istream &str, NTL::vec_long &vl)
 
long read_raw_int (std::istream &str)
 
int read_raw_int32 (std::istream &str)
 
void write_raw_int (std::ostream &str, long num)
 
void write_raw_int32 (std::ostream &str, int num)
 
void write_raw_double (std::ostream &str, const double d)
 
double read_raw_double (std::istream &str)
 
void write_raw_xdouble (std::ostream &str, const NTL::xdouble xd)
 
NTL::xdouble read_raw_xdouble (std::istream &str)
 
void write_raw_ZZ (std::ostream &str, const NTL::ZZ &zz)
 
void read_raw_ZZ (std::istream &str, NTL::ZZ &zz)
 
template<typename T >
void write_raw_vector (std::ostream &str, const std::vector< T > &v)
 
template<>
void write_raw_vector< long > (std::ostream &str, const std::vector< long > &v)
 
template<>
void write_raw_vector< double > (std::ostream &str, const std::vector< double > &v)
 
template<typename T >
void read_raw_vector (std::istream &str, std::vector< T > &v, T &init)
 
template<typename T >
void read_raw_vector (std::istream &str, std::vector< T > &v)
 
template<>
void read_raw_vector< long > (std::istream &str, std::vector< long > &v)
 
template<>
void read_raw_vector< double > (std::istream &str, std::vector< double > &v)
 
template<typename T >
void read_raw_vector (std::istream &str, std::vector< T > &v, const Context &context)
 
void BluesteinInit (long n, const NTL::zz_p &root, NTL::zz_pX &powers, NTL::Vec< NTL::mulmod_precon_t > &powers_aux, NTL::fftRep &Rb)
 initialize bluestein More...
 
void BluesteinFFT (NTL::zz_pX &x, long n, const NTL::zz_p &root, const NTL::zz_pX &powers, const NTL::Vec< NTL::mulmod_precon_t > &powers_aux, const NTL::fftRep &Rb)
 apply bluestein More...
 
template<typename X , typename Cloner >
void swap (cloned_ptr< X, Cloner > &x, cloned_ptr< X, Cloner > &y)
 
template<typename X , typename Cloner >
void swap (copied_ptr< X, Cloner > &x, copied_ptr< X, Cloner > &y)
 
double lweEstimateSecurity (int n, double log2AlphaInv, int hwt)
 An estimate for the security-level. This has a lower bound of 0. More...
 
long FindM (long k, long nBits, long c, long p, long d, long s, long chosen_m, bool verbose=false)
 Returns smallest parameter m satisfying various constraints: More...
 
void writeContextBase (std::ostream &s, const Context &context)
 write [m p r gens ords] data More...
 
void readContextBase (std::istream &s, unsigned long &m, unsigned long &p, unsigned long &r, std::vector< long > &gens, std::vector< long > &ords)
 read [m p r gens ords] data, needed to construct context More...
 
std::unique_ptr< ContextbuildContextFromAscii (std::istream &str)
 
void writeContextBaseBinary (std::ostream &str, const Context &context)
 write [m p r gens ords] data More...
 
void writeContextBinary (std::ostream &str, const Context &context)
 
void readContextBaseBinary (std::istream &s, unsigned long &m, unsigned long &p, unsigned long &r, std::vector< long > &gens, std::vector< long > &ords)
 read [m p r gens ords] data, needed to construct context More...
 
std::unique_ptr< ContextbuildContextFromBinary (std::istream &str)
 
void readContextBinary (std::istream &str, Context &context)
 
void buildModChain (Context &context, long nBits, long nDgts=3, bool willBeBootstrappable=false, long skHwt=0, long resolution=3, long bitsInSpecialPrimes=0)
 
void endBuildModChain (Context &context)
 
void packedRecrypt (const CtPtrs &cPtrs, const std::vector< zzX > &unpackConsts, const EncryptedArray &ea)
 
void packedRecrypt (const CtPtrs &array, const std::vector< zzX > &unpackConsts, const EncryptedArray &ea, long belowLvl)
 
void packedRecrypt (const CtPtrMat &m, const std::vector< zzX > &unpackConsts, const EncryptedArray &ea, long belowLvl=LONG_MAX)
 
long findMinBitCapacity (const CtPtrs &v)
 
long findMinBitCapacity (const CtPtrMat &m)
 
long findMinBitCapacity (std::initializer_list< const CtPtrs * > list)
 
void innerProduct (Ctxt &result, const CtPtrs &v1, const CtPtrs &v2)
 
Ctxt innerProduct (const CtPtrs &v1, const CtPtrs &v2)
 
std::ostream & operator<< (std::ostream &s, const SKHandle &handle)
 
std::istream & operator>> (std::istream &s, CtxtPart &p)
 
std::ostream & operator<< (std::ostream &s, const CtxtPart &p)
 
void totalProduct (Ctxt &out, const std::vector< Ctxt > &v)
 
void incrementalProduct (std::vector< Ctxt > &v)
 
void innerProduct (Ctxt &result, const std::vector< Ctxt > &v1, const std::vector< Ctxt > &v2)
 
Ctxt innerProduct (const std::vector< Ctxt > &v1, const std::vector< Ctxt > &v2)
 
void innerProduct (Ctxt &result, const std::vector< Ctxt > &v1, const std::vector< DoubleCRT > &v2)
 Compute the inner product of a vectors of ciphertexts and a constant vector. More...
 
Ctxt innerProduct (const std::vector< Ctxt > &v1, const std::vector< DoubleCRT > &v2)
 
void innerProduct (Ctxt &result, const std::vector< Ctxt > &v1, const std::vector< NTL::ZZX > &v2)
 
Ctxt innerProduct (const std::vector< Ctxt > &v1, const std::vector< NTL::ZZX > &v2)
 
void CheckCtxt (const Ctxt &c, const char *label)
 print to cerr some info about ciphertext More...
 
void extractDigits (std::vector< Ctxt > &digits, const Ctxt &c, long r=0)
 Extract the mod-p digits of a mod-p^r ciphertext. More...
 
void extractDigits (std::vector< Ctxt > &digits, const Ctxt &c, long r, bool shortCut)
 
void extendExtractDigits (std::vector< Ctxt > &digits, const Ctxt &c, long r, long e)
 
void setupDebugGlobals (SecKey *debug_key, const std::shared_ptr< const EncryptedArray > &debug_ea, NTL::ZZX debug_ptxt=NTL::ZZX{})
 Setup function for setting up the global debug variables. More...
 
void cleanupDebugGlobals ()
 Cleanup function for clearing the global debug variables. More...
 
void decryptAndPrint (std::ostream &s, const Ctxt &ctxt, const SecKey &sk, const EncryptedArray &ea, long flags=0)
 
NTL::xdouble embeddingLargestCoeff (const Ctxt &ctxt, const SecKey &sk)
 
double realToEstimatedNoise (const Ctxt &ctxt, const SecKey &sk)
 
void checkNoise (const Ctxt &ctxt, const SecKey &sk, const std::string &msg, double thresh=10.0)
 
bool decryptAndCompare (const Ctxt &ctxt, const SecKey &sk, const EncryptedArray &ea, const PlaintextArray &pa)
 
void rawDecrypt (NTL::ZZX &plaintxt, const std::vector< NTL::ZZX > &zzParts, const DoubleCRT &sKey, long q=0)
 
template<typename VEC >
std::ostream & printVec (std::ostream &s, const VEC &v, long nCoeffs=40)
 
std::ostream & printZZX (std::ostream &s, const NTL::ZZX &poly, long nCoeffs=40)
 
void conv (DoubleCRT &d, const NTL::ZZX &p)
 
void conv (NTL::ZZX &p, const DoubleCRT &d)
 
NTL::ZZX to_ZZX (const DoubleCRT &d)
 
template<typename RX , typename RXModulus >
void plaintextAutomorph (RX &bb, const RX &a, long k, long m, const RXModulus &PhimX)
 
template<typename RX , typename type >
void plaintextAutomorph (RX &b, const RX &a, long i, long j, const EncryptedArrayDerived< type > &ea)
 
EncryptedArrayBasebuildEncryptedArray (const Context &context, const PAlgebraMod &alMod, const NTL::ZZX &G=NTL::ZZX::zero())
 A "factory" for building EncryptedArrays. More...
 
std::ostream & operator<< (std::ostream &s, const PlaintextArray &pa)
 
void rotate (const EncryptedArray &ea, PlaintextArray &pa, long k)
 
void shift (const EncryptedArray &ea, PlaintextArray &pa, long k)
 
void encode (const EncryptedArray &ea, PlaintextArray &pa, const std::vector< long > &array)
 
void encode (const EncryptedArray &ea, PlaintextArray &pa, const std::vector< NTL::ZZX > &array)
 
void encode (const EncryptedArray &ea, PlaintextArray &pa, long val)
 
void encode (const EncryptedArray &ea, PlaintextArray &pa, const NTL::ZZX &val)
 
void random (const EncryptedArray &ea, PlaintextArray &pa)
 
void decode (const EncryptedArray &ea, std::vector< long > &array, const PlaintextArray &pa)
 
void decode (const EncryptedArray &ea, std::vector< NTL::ZZX > &array, const PlaintextArray &pa)
 
bool equals (const EncryptedArray &ea, const PlaintextArray &pa, const PlaintextArray &other)
 
bool equals (const EncryptedArray &ea, const PlaintextArray &pa, const std::vector< long > &other)
 
bool equals (const EncryptedArray &ea, const PlaintextArray &pa, const std::vector< NTL::ZZX > &other)
 
void add (const EncryptedArray &ea, PlaintextArray &pa, const PlaintextArray &other)
 
void sub (const EncryptedArray &ea, PlaintextArray &pa, const PlaintextArray &other)
 
void mul (const EncryptedArray &ea, PlaintextArray &pa, const PlaintextArray &other)
 
void negate (const EncryptedArray &ea, PlaintextArray &pa)
 
void frobeniusAutomorph (const EncryptedArray &ea, PlaintextArray &pa, long j)
 
void frobeniusAutomorph (const EncryptedArray &ea, PlaintextArray &pa, const NTL::Vec< long > &vec)
 
void applyPerm (const EncryptedArray &ea, PlaintextArray &pa, const NTL::Vec< long > &pi)
 
void power (const EncryptedArray &ea, PlaintextArray &pa, long e)
 
void runningSums (const EncryptedArray &ea, Ctxt &ctxt)
 A ctxt that encrypts $(x_1, ..., x_n)$ is replaced by an encryption of $(y_1, ..., y_n)$, where $y_i = sum_{j\le i} x_j$. More...
 
void print_stats (std::ostream &s)
 
const std::vector< double > * fetch_saved_values (const char *)
 
std::ostream & operator<< (std::ostream &s, const CubeSignature &sig)
 
template<typename T >
void getHyperColumn (NTL::Vec< T > &v, const ConstCubeSlice< T > &s, long pos)
 
template<typename T >
void setHyperColumn (const NTL::Vec< T > &v, const CubeSlice< T > &s, long pos)
 
template<typename T >
void setHyperColumn (const NTL::Vec< T > &v, const CubeSlice< T > &s, long pos, const T &val)
 
template<typename T >
void print3D (const HyperCube< T > &c)
 
template<typename T >
bool operator== (const IndexMap< T > &map1, const IndexMap< T > &map2)
 Comparing maps, by comparing all the elements. More...
 
template<typename T >
bool operator!= (const IndexMap< T > &map1, const IndexMap< T > &map2)
 
IndexSet operator| (const IndexSet &s, const IndexSet &t)
 union More...
 
IndexSet operator& (const IndexSet &s, const IndexSet &t)
 intersection More...
 
IndexSet operator^ (const IndexSet &s, const IndexSet &t)
 exclusive-or More...
 
IndexSet operator/ (const IndexSet &s, const IndexSet &t)
 set minus More...
 
std::ostream & operator<< (std::ostream &str, const IndexSet &set)
 
std::istream & operator>> (std::istream &str, IndexSet &set)
 
long card (const IndexSet &s)
 Functional cardinality. More...
 
bool empty (const IndexSet &s)
 
bool operator<= (const IndexSet &s1, const IndexSet &s2)
 Is s1 subset or equal to s2. More...
 
bool operator< (const IndexSet &s1, const IndexSet &s2)
 Is s1 strict subset of s2. More...
 
bool operator>= (const IndexSet &s1, const IndexSet &s2)
 Is s2 subset or equal to s2. More...
 
bool operator> (const IndexSet &s1, const IndexSet &s2)
 Is s2 strict subset of s1. More...
 
bool disjoint (const IndexSet &s1, const IndexSet &s2)
 Functional disjoint. More...
 
void buildUnpackSlotEncoding (std::vector< zzX > &unpackSlotEncoding, const EncryptedArray &ea)
 
void unpack (const CtPtrs &unpacked, const Ctxt &packed, const EncryptedArray &ea, const std::vector< zzX > &unpackSlotEncoding)
 
long unpack (const CtPtrs &unpacked, const CtPtrs &packed, const EncryptedArray &ea, const std::vector< zzX > &unpackSlotEncoding)
 
void repack (Ctxt &packed, const CtPtrs &unpacked, const EncryptedArray &ea)
 
long repack (const CtPtrs &packed, const CtPtrs &unpacked, const EncryptedArray &ea)
 
void unpackSlots (std::vector< std::size_t > &value, PlaintextArray &pa, const EncryptedArray &ea)
 
void unpackSlots (std::vector< std::size_t > &value, NTL::ZZX &pa, const EncryptedArray &ea)
 
void packConstant (zzX &result, unsigned long data, long nbits, const EncryptedArray &ea)
 
void packConstants (zzX &result, const std::vector< std::size_t > &data, long nbits, const EncryptedArray &ea)
 
void writePubKeyBinary (std::ostream &str, const PubKey &pk)
 
void readPubKeyBinary (std::istream &str, PubKey &pk)
 
void writeSecKeyBinary (std::ostream &str, const SecKey &sk)
 
void readSecKeyBinary (std::istream &str, SecKey &sk)
 
double RLWE (DoubleCRT &c0, DoubleCRT &c1, const DoubleCRT &s, long p, NTL::ZZ *prgSeed=nullptr)
 
double RLWE1 (DoubleCRT &c0, const DoubleCRT &c1, const DoubleCRT &s, long p)
 Same as RLWE, but assumes that c1 is already chosen by the caller. More...
 
std::ostream & operator<< (std::ostream &str, const KeySwitch &matrix)
 
void Warning (const char *msg)
 Function for logging a warning message. More...
 
void Warning (const std::string &msg)
 Function for logging a warning message. More...
 
long maximum_flow (FlowGraph &fg, long src, long sink)
 
void traceMap (Ctxt &ctxt)
 
void mul (PlaintextArray &pa, const MatMul1D &mat)
 
void mul (PlaintextArray &pa, const BlockMatMul1D &mat)
 
void mul (PlaintextArray &pa, const MatMulFull &mat)
 
void mul (PlaintextArray &pa, const BlockMatMulFull &mat)
 
template<typename T , typename T2 , typename std::enable_if_t< std::is_convertible< T, std::size_t >::value > * = nullptr>
Tensor< T, 2 > operator* (const Tensor< T, 2 > &M1, const Tensor< T2, 2 > &M2)
 
template<typename T >
void printMatrix (const Matrix< T > &M, std::ostream &out=std::cout)
 
long sumOfCoeffs (const zzX &f)
 
NTL::ZZ sumOfCoeffs (const NTL::ZZX &f)
 
NTL::ZZ sumOfCoeffs (const DoubleCRT &f)
 
template<typename T >
double largestCoeff (const NTL::Vec< T > &f)
 The L-infinity norm of an element (in coefficient representation) More...
 
template<typename T >
double largestCoeff (const std::vector< T > &f)
 
NTL::ZZ largestCoeff (const NTL::ZZX &f)
 
NTL::ZZ largestCoeff (const NTL::Vec< NTL::ZZ > &f)
 
NTL::ZZ largestCoeff (const DoubleCRT &f)
 
double coeffsL2NormSquared (const zzX &f)
 The L2-norm of an element (in coefficient representation) More...
 
NTL::xdouble coeffsL2NormSquared (const NTL::ZZX &f)
 
NTL::xdouble coeffsL2NormSquared (const DoubleCRT &f)
 
double coeffsL2Norm (const zzX &f)
 
NTL::xdouble coeffsL2Norm (const NTL::ZZX &f)
 
NTL::xdouble coeffsL2Norm (const DoubleCRT &f)
 
double embeddingLargestCoeff (const zzX &f, const PAlgebra &palg)
 
double embeddingLargestCoeff (const std::vector< double > &f, const PAlgebra &palg)
 
void embeddingLargestCoeff_x2 (double &norm1, double &norm2, const std::vector< double > &f1, const std::vector< double > &f2, const PAlgebra &palg)
 
NTL::xdouble embeddingLargestCoeff (const NTL::ZZX &f, const PAlgebra &palg)
 
void CKKS_canonicalEmbedding (std::vector< cx_double > &v, const zzX &f, const PAlgebra &palg)
 
void CKKS_canonicalEmbedding (std::vector< cx_double > &v, const NTL::ZZX &f, const PAlgebra &palg)
 
void CKKS_canonicalEmbedding (std::vector< cx_double > &v, const std::vector< double > &f, const PAlgebra &palg)
 
void CKKS_embedInSlots (zzX &f, const std::vector< cx_double > &v, const PAlgebra &palg, double scaling)
 
bool setDryRun (bool toWhat=true)
 
bool isDryRun ()
 
void setAutomorphVals (std::set< long > *aVals)
 
bool isSetAutomorphVals ()
 
void recordAutomorphVal (long k)
 
void setAutomorphVals2 (std::set< long > *aVals)
 
bool isSetAutomorphVals2 ()
 
void recordAutomorphVal2 (long k)
 
long bitSetToLong (long bits, long bitSize)
 Considers bits as a vector of bits and returns the value it represents when interpreted as a n-bit 2's complement number, where n is given by bitSize. More...
 
long mcMod (long a, long b)
 Routines for computing mathematically correct mod and div. More...
 
long mcDiv (long a, long b)
 
long balRem (long a, long q)
 
double fsquare (double x)
 Return the square of a number as a double. More...
 
long multOrd (long p, long m)
 Return multiplicative order of p modulo m, or 0 if GCD(p, m) != 1. More...
 
void ppsolve (NTL::vec_zz_pE &x, const NTL::mat_zz_pE &A, const NTL::vec_zz_pE &b, long p, long r)
 Prime power solver. More...
 
void ppsolve (NTL::vec_GF2E &x, const NTL::mat_GF2E &A, const NTL::vec_GF2E &b, long p, long r)
 A version for GF2: must have p == 2 and r == 1. More...
 
void ppInvert (NTL::mat_zz_p &X, const NTL::mat_zz_p &A, long p, long r)
 Compute the inverse mod p^r of an n x n matrix. More...
 
void ppInvert (NTL::mat_zz_pE &X, const NTL::mat_zz_pE &A, long p, long r)
 
void ppInvert (NTL::mat_GF2 &X, const NTL::mat_GF2 &A, UNUSED long p, UNUSED long r)
 
void ppInvert (NTL::mat_GF2E &X, const NTL::mat_GF2E &A, UNUSED long p, UNUSED long r)
 
void buildLinPolyMatrix (NTL::mat_zz_pE &M, long p)
 
void buildLinPolyMatrix (NTL::mat_GF2E &M, long p)
 
void buildLinPolyCoeffs (NTL::vec_zz_pE &C, const NTL::vec_zz_pE &L, long p, long r)
 Combination of buildLinPolyMatrix and ppsolve. More...
 
void buildLinPolyCoeffs (NTL::vec_GF2E &C, const NTL::vec_GF2E &L, long p, long r)
 A version for GF2: must be called with p == 2 and r == 1. More...
 
void applyLinPoly (NTL::zz_pE &beta, const NTL::vec_zz_pE &C, const NTL::zz_pE &alpha, long p)
 Apply a linearized polynomial with coefficient vector C. More...
 
void applyLinPoly (NTL::GF2E &beta, const NTL::vec_GF2E &C, const NTL::GF2E &alpha, long p)
 A version for GF2: must be called with p == 2 and r == 1. More...
 
double log2 (const NTL::xdouble &x)
 Base-2 logarithm. More...
 
void factorize (std::vector< long > &factors, long N)
 Factoring by trial division, only works for N<2^{60}, only the primes are recorded, not their multiplicity. More...
 
void factorize (std::vector< NTL::ZZ > &factors, const NTL::ZZ &N)
 
void factorize (NTL::Vec< NTL::Pair< long, long >> &factors, long N)
 Factoring by trial division, only works for N<2^{60} primes and multiplicities are recorded. More...
 
void pp_factorize (std::vector< long > &factors, long N)
 Prime-power factorization. More...
 
void phiN (long &phiN, std::vector< long > &facts, long N)
 Compute Phi(N) and also factorize N. More...
 
void phiN (NTL::ZZ &phiN, std::vector< NTL::ZZ > &facts, const NTL::ZZ &N)
 
long phi_N (long N)
 Compute Phi(N). More...
 
long findGenerators (std::vector< long > &gens, std::vector< long > &ords, long m, long p, const std::vector< long > &candidates=std::vector< long >())
 
void FindPrimitiveRoot (NTL::zz_p &r, unsigned long e)
 Find e-th root of unity modulo the current modulus. More...
 
void FindPrimitiveRoot (NTL::ZZ_p &r, unsigned long e)
 
long mobius (long n)
 Compute mobius function (naive method as n is small). More...
 
NTL::ZZX Cyclotomic (long N)
 Compute cyclotomic polynomial. More...
 
NTL::ZZX makeIrredPoly (long p, long d)
 Return a degree-d irreducible polynomial mod p. More...
 
long primroot (long N, long phiN)
 Find a primitive root modulo N. More...
 
long ord (long N, long p)
 Compute the highest power of p that divides N. More...
 
bool is2power (long m)
 
NTL::ZZX RandPoly (long n, const NTL::ZZ &p)
 
void MulMod (NTL::ZZX &out, const NTL::ZZX &f, long a, long q, bool abs)
 
void MulMod (NTL::ZZX &out, const NTL::ZZX &f, long a, long q)
 
NTL::ZZX MulMod (const NTL::ZZX &f, long a, long q, bool abs)
 
NTL::ZZX MulMod (const NTL::ZZX &f, long a, long q)
 
void balanced_MulMod (NTL::ZZX &out, const NTL::ZZX &f, long a, long q)
 
template<typename T1 , typename T2 >
void convert (T1 &x1, const T2 &x2)
 A generic template that resolves to NTL's conv routine. More...
 
template<typename T1 , typename T2 >
void convert (std::vector< T1 > &v1, const std::vector< T2 > &v2)
 generic vector conversion routines More...
 
template<typename T1 , typename T2 >
void convert (std::vector< T1 > &v1, const NTL::Vec< T2 > &v2)
 
template<typename T1 , typename T2 >
void convert (NTL::Vec< T1 > &v1, const std::vector< T2 > &v2)
 
template<typename T >
void convert (std::vector< T > &v1, const std::vector< T > &v2)
 Trivial type conversion, useful for generic code. More...
 
template<typename T1 , typename T2 >
T1 convert (const T2 &v2)
 
template<typename T >
std::vector< T > vector_replicate (const T &a, long n)
 
template<typename T >
std::vector< T > Vec_replicate (const T &a, long n)
 
long computeProd (const NTL::Vec< long > &vec)
 returns \prod_d vec[d] More...
 
long computeProd (const std::vector< long > &vec)
 
void mul (std::vector< NTL::ZZX > &x, const std::vector< NTL::ZZX > &a, long b)
 
void div (std::vector< NTL::ZZX > &x, const std::vector< NTL::ZZX > &a, long b)
 
void add (std::vector< NTL::ZZX > &x, const std::vector< NTL::ZZX > &a, const std::vector< NTL::ZZX > &b)
 
long is_in (long x, int *X, long sz)
 Finds whether x is an element of the set X of size sz, Returns -1 it not and the location if true. More...
 
long CRTcoeff (long p, long q, bool symmetric=false)
 Returns a CRT coefficient: x = (0 mod p, 1 mod q). If symmetric is set then x \in [-pq/2, pq/2), else x \in [0,pq) More...
 
template<class zzvec >
bool intVecCRT (NTL::vec_ZZ &vp, const NTL::ZZ &p, const zzvec &vq, long q)
 Incremental integer CRT for vectors. More...
 
template<typename T , bool maxFlag>
long argminmax (std::vector< T > &v)
 Find the index of the (first) largest/smallest element. More...
 
template<typename T >
long argmax (std::vector< T > &v)
 
template<typename T >
long argmin (std::vector< T > &v)
 
long argmax (std::vector< long > &v, bool(*moreThan)(long, long))
 A variant with a specialized comparison function (*moreThan)(a,b) returns the comparison a>b. More...
 
bool closeToOne (const NTL::xdouble &x, long p)
 
std::pair< long, long > rationalApprox (double x, long denomBound=0)
 
std::pair< NTL::ZZ, NTL::ZZ > rationalApprox (NTL::xdouble x, NTL::xdouble denomBound=NTL::xdouble(0.0))
 
void seekPastChar (std::istream &str, int cc)
 Advance the input stream beyond white spaces and a single instance of the char cc. More...
 
bool iterateInterestRegion (std::istream &str, int begin_char, int separator, int end_char)
 Advance the input stream str beyond white spaces and a single separator in the region-of-interest delimited by begin_char and end_char. More...
 
std::vector< std::stringstream > extractTokenizeRegion (std::istream &istr, char begin_char, char end_char, char separator, bool skip_space=true)
 Advance the input stream istr beyond white spaces. Then split the region delimited by begin_char and end_char at each occurrence of separator that is not contained in an inner begin_char - end_char section. The function returns a std::vector<std::stringstream> with the stream of every section of the input region. More...
 
template<typename T >
void reverse (NTL::Vec< T > &v, long lo, long hi)
 Reverse a vector in place. More...
 
template<typename T >
void rotate (NTL::Vec< T > &v, long k)
 Rotate a vector in place using swaps. More...
 
template<typename T >
long lsize (const std::vector< T > &v)
 Size of STL vector as a long (rather than unsigned long) More...
 
template<typename T >
void killVec (std::vector< T > &vec)
 NTL/std compatibility. More...
 
template<typename T >
void killVec (NTL::Vec< T > &vec)
 
template<typename T >
void setLengthZero (std::vector< T > &vec)
 
template<typename T >
void setLengthZero (NTL::Vec< T > &vec)
 
template<typename T >
long lsize (const NTL::Vec< T > &v)
 
template<typename T >
void resize (NTL::Vec< T > &v, long sz, const T &val)
 
template<typename T >
void resize (std::vector< T > &v, long sz, const T &val)
 
template<typename T >
void resize (NTL::Vec< T > &v, long sz)
 
template<typename T >
void resize (std::vector< T > &v, long sz)
 
template<typename T1 , typename T2 >
bool sameObject (const T1 *p1, const T2 *p2)
 Testing if two vectors point to the same object. More...
 
void ModComp (NTL::ZZX &res, const NTL::ZZX &g, const NTL::ZZX &h, const NTL::ZZX &f)
 Modular composition of polynomials: res = g(h) mod f. More...
 
long polyEvalMod (const NTL::ZZX &poly, long x, long p)
 Evaluates a modular integer polynomial, returns poly(x) mod p. More...
 
void interpolateMod (NTL::ZZX &poly, const NTL::vec_long &x, const NTL::vec_long &y, long p, long e=1)
 Interpolate polynomial such that poly(x[i] mod p)=y[i] (mod p^e) It is assumed that the points x[i] are all distinct modulo p. More...
 
long divc (long a, long b)
 returns ceiling(a/b); assumes a >=0, b>0, a+b <= MAX_LONG More...
 
void rem (NTL::zz_pX &r, const NTL::zz_pX &a, const zz_pXModulus1 &ff)
 
template<typename T >
std::ostream & operator<< (std::ostream &s, std::vector< T > v)
 
template<typename T >
std::istream & operator>> (std::istream &s, std::vector< T > &v)
 
template<typename T >
std::string vecToStr (const std::vector< T > &v)
 
template<typename T >
NTL::Vec< T > atoVec (const char *a)
 
template<typename T >
std::vector< T > atovector (const char *a)
 
void TofftRep_trunc (NTL::fftRep &y, const NTL::zz_pX &x, long k, UNUSED long len, long lo, long hi)
 
void TofftRep_trunc (NTL::fftRep &y, const NTL::zz_pX &x, long k, long len)
 
double max_abs (const std::vector< std::complex< double >> &vec)
 
double max_abs (const std::vector< double > &vec)
 
template<typename T , typename P , typename... Args>
void make_lazy (const NTL::Lazy< T, P > &obj, Args &&... args)
 
template<typename T , typename P , typename F , typename... Args>
void make_lazy_with_fun (const NTL::Lazy< T, P > &obj, F f, Args &&... args)
 
PAlgebraModBasebuildPAlgebraMod (const PAlgebra &zMStar, long r)
 Builds a table, of type PA_GF2 if p == 2 and r == 1, and PA_zz_p otherwise. More...
 
bool comparePAlgebra (const PAlgebra &palg, unsigned long m, unsigned long p, unsigned long r, const std::vector< long > &gens, const std::vector< long > &ords)
 returns true if the palg parameters match the rest, false otherwise More...
 
double calcPolyNormBnd (long m)
 
template<typename TXT >
Matrix< TXT > calculateMasks (const EncryptedArray &ea, Matrix< TXT > query, const Matrix< Ptxt< BGV >> &database)
 Given a query set and a database, calculates a mask of {0,1} where 1 signifies a matching element and 0 otherwise. More...
 
template<typename TXT >
Matrix< CtxtcalculateMasks (const EncryptedArray &ea, Matrix< TXT > query, const Matrix< Ctxt > &database)
 Given a query set and a database, calculates a mask of {0,1} where 1 signifies a matching element and 0 otherwise. More...
 
template<typename TXT >
Matrix< TXT > calculateScores (const std::vector< std::vector< long >> index_sets, const std::vector< long > &offsets, const std::vector< Matrix< long >> &weights, const Matrix< TXT > &mask)
 Given a mask and information about the query to be performed, calculates a score for each matching element signified by the mask. More...
 
PolyMod partialMatchEncode (uint32_t input, const Context &context)
 Given a value, encode the value across the coefficients of a polynomial. More...
 
std::shared_ptr< ColNumbermakeQueryExpr (int cl)
 Utility function for creating a shared pointer to a specified column in a query. More...
 
std::shared_ptr< Andoperator&& (const QueryExpr &lhs, const QueryExpr &rhs)
 Overloaded operator for creating a shared pointer to an AND expression. More...
 
std::shared_ptr< Oroperator|| (const QueryExpr &lhs, const QueryExpr &rhs)
 Overloaded operator for creating a shared pointer to an OR expression. More...
 
template<typename T >
void applyPermToVec (NTL::Vec< T > &out, const NTL::Vec< T > &in, const Permut &p1)
 Apply a permutation to a std::vector, out[i]=in[p1[i]] (NOT in-place) More...
 
template<typename T >
void applyPermToVec (std::vector< T > &out, const std::vector< T > &in, const Permut &p1)
 
template<typename T >
void applyPermsToVec (NTL::Vec< T > &out, const NTL::Vec< T > &in, const Permut &p2, const Permut &p1)
 Apply two permutations to a std::vector out[i]=in[p2[p1[i]]] (NOT in-place) More...
 
template<typename T >
void applyPermsToVec (std::vector< T > &out, const std::vector< T > &in, const Permut &p2, const Permut &p1)
 
void randomPerm (Permut &perm, long n)
 A random size-n permutation. More...
 
std::ostream & operator<< (std::ostream &s, const ColPerm &p)
 
void breakPermByDim (std::vector< ColPerm > &out, const Permut &pi, const CubeSignature &sig)
 Takes a permutation pi over m-dimensional cube C=Z_{n1} x...x Z_{nm} and expresses pi as a product pi = rho_{2m-1} o ... o rho_2 o rho_1 where each rho_i is a column permutation along one dimension. Specifically for i<m, the permutations rho_i and rho_{2(m-1)-i} permute the i'th dimension. More...
 
void polyEval (Ctxt &ret, NTL::ZZX poly, const Ctxt &x, long k=0)
 Evaluate a cleartext polynomial on an encrypted input. More...
 
void polyEval (Ctxt &ret, const NTL::Vec< Ctxt > &poly, const Ctxt &x)
 Evaluate an encrypted polynomial on an encrypted input. More...
 
std::ostream & operator<< (std::ostream &s, const ModuliSizes::Entry &e)
 
std::istream & operator>> (std::istream &s, ModuliSizes::Entry &e)
 
void write (std::ostream &s, const ModuliSizes::Entry &e)
 
void read (std::istream &s, ModuliSizes::Entry &e)
 
template<typename T >
long lsize (const PtrMatrix< T > &v)
 
template<typename T >
void resize (PtrMatrix< T > &v, long newSize)
 
template<typename T >
void setLengthZero (PtrMatrix< T > &v)
 
template<typename T >
const T * ptr2nonNull (std::initializer_list< const PtrVector< T > * > list)
 
template<typename T >
long lsize (const PtrVector< T > &v)
 
template<typename T >
void setLengthZero (PtrVector< T > &v)
 
template<typename T >
void resize (PtrVector< T > &v, long newSize, const T &val)
 
template<typename T >
void resize (PtrVector< T > &v, long newSize, const T *val)
 
template<typename V1 , typename V2 >
void vecCopy (V1 &v1, const V2 &v2, long sizeLimit=0)
 
template<typename V , typename T >
void vecCopy (V &v1, const PtrVector< T > &v2, long sizeLimit=0)
 
template<typename V , typename T >
void vecCopy (PtrVector< T > &v1, const V &v2, long sizeLimit=0)
 
template<typename T >
void vecCopy (PtrVector< T > &v1, const PtrVector< T > &v2, long sizeLimit=0)
 
template<typename From , typename Scheme >
std::vector< typename Scheme::SlotType > convertDataToSlotVector (const std::vector< From > &data, const Context &context)
 Converts std::vector<From> to std::vector<Scheme::SlotType>. More...
 
template<typename Scheme >
void innerProduct (Ptxt< Scheme > &result, const std::vector< Ptxt< Scheme >> &first_vec, const std::vector< Ptxt< Scheme >> &second_vec)
 Free function that computes the inner product of two vectors of Ptxt. More...
 
void deserialize (std::istream &is, std::complex< double > &num)
 Deserialize a std::complex<double> from the input stream is delimited by '[' and ']' (instead of the default '(', ')'). More...
 
void serialize (std::ostream &os, const std::complex< double > &num)
 Serialize a std::complex<double> to the output stream os delimited by '[' and ']' (instead of the default '(', ')'). More...
 
template<typename Scheme >
void deserialize (std::istream &is, Ptxt< Scheme > &ptxt)
 Function to deserialize a Ptxt<Scheme>. More...
 
template<typename Scheme >
void serialize (std::ostream &os, const Ptxt< Scheme > &ptxt)
 Function to serialize a Ptxt<Scheme>. More...
 
template<typename Scheme >
std::istream & operator>> (std::istream &is, Ptxt< Scheme > &ptxt)
 Input shift operator. Uses the deserialize function internally. More...
 
template<typename Scheme >
std::ostream & operator<< (std::ostream &is, const Ptxt< Scheme > &ptxt)
 Output shift operator. Uses the serialize function internally. More...
 
MatMul1DbuildRandomMatrix (const EncryptedArray &ea, long dim)
 
MatMul1DbuildRandomMultiMatrix (const EncryptedArray &ea, long dim)
 
BlockMatMul1DbuildRandomBlockMatrix (const EncryptedArray &ea, long dim)
 
BlockMatMul1DbuildRandomMultiBlockMatrix (const EncryptedArray &ea, long dim)
 
MatMulFullbuildRandomFullMatrix (const EncryptedArray &ea)
 
BlockMatMulFullbuildRandomFullBlockMatrix (const EncryptedArray &ea)
 
general_range< long > range (long n)
 
general_range< long > range (long m, long n)
 
void replicate (const EncryptedArray &ea, Ctxt &ctx, long pos)
 The value in slot #pos is replicated in all other slots. On an n-slot ciphertext, this algorithm performs O(log n) 1D rotations. More...
 
void replicate0 (const EncryptedArray &ea, Ctxt &ctxt, long pos)
 A lower-level routine. Same as replicate, but assumes all slots are zero except slot #pos. More...
 
void replicateAll (const EncryptedArray &ea, const Ctxt &ctxt, ReplicateHandler *handler, long recBound=64, RepAuxDim *repAuxPtr=nullptr)
 
void replicateAll (std::vector< Ctxt > &v, const EncryptedArray &ea, const Ctxt &ctxt, long recBound=64, RepAuxDim *repAuxPtr=nullptr)
 
template<typename Scheme >
void replicateAll (std::vector< Ptxt< Scheme >> &v, const EncryptedArray &, const Ptxt< Scheme > &ptxt)
 Generate a vector of plaintexts with each slot replicated in each plaintext. More...
 
void replicateAllOrig (const EncryptedArray &ea, const Ctxt &ctxt, ReplicateHandler *handler, RepAux *repAuxPtr=nullptr)
 
void replicate (const EncryptedArray &ea, PlaintextArray &pa, long i)
 
template<typename Scheme >
void replicate (const EncryptedArray &, Ptxt< Scheme > &ptxt, long i)
 Replicate single slot of a Ptxt object across all of its slots. More...
 
void sampleSmall (zzX &poly, long n, double prob=0.5)
 
void sampleSmall (NTL::ZZX &poly, long n, double prob=0.5)
 
void sampleHWt (zzX &poly, long n, long Hwt=100)
 Sample a degree-(n-1) poly as above, with only Hwt nonzero coefficients. More...
 
void sampleHWt (NTL::ZZX &poly, long n, long Hwt=100)
 
void sampleGaussian (zzX &poly, long n, double stdev)
 Sample polynomials with Gaussian coefficients. More...
 
void sampleGaussian (NTL::ZZX &poly, long n, double stdev)
 
void sampleUniform (zzX &poly, long n, long B=100)
 Sample a degree-(n-1) ZZX, with coefficients uniform in [-B,B]. More...
 
void sampleUniform (NTL::ZZX &poly, long n, const NTL::ZZ &B=NTL::ZZ(100L))
 
void sampleGaussian (std::vector< double > &dvec, long n, double stdev)
 Choose a vector of continuous Gaussians. More...
 
double sampleHWt (zzX &poly, const Context &context, long Hwt=100)
 
double sampleHWtBounded (zzX &poly, const Context &context, long Hwt=100)
 
double sampleHWtBoundedEffectiveBound (const Context &context, long Hwt=100)
 
double sampleSmall (zzX &poly, const Context &context)
 
double sampleSmallBounded (zzX &poly, const Context &context)
 
double sampleGaussian (zzX &poly, const Context &context, double stdev)
 
double sampleGaussianBounded (zzX &poly, const Context &context, double stdev)
 
double sampleUniform (zzX &poly, const Context &context, long B=100)
 
NTL::xdouble sampleUniform (NTL::ZZX &poly, const Context &context, const NTL::ZZ &B=NTL::ZZ(100L))
 
void reduceModPhimX (zzX &poly, const PAlgebra &palg)
 
const NTL::zz_pXModulus & getPhimXMod (const PAlgebra &palg)
 
template<typename TXT >
void binSumReduction (std::vector< TXT > &ctxtArray)
 Performs a binary summation of a vector of elements. More...
 
template<typename TXT >
TXT calculateSetIntersection (const TXT &query, const std::vector< NTL::ZZX > &server_set)
 Given two sets, calculates and returns the set intersection. More...
 
void computeAllProducts (CtPtrs &products, const CtPtrs &array, std::vector< zzX > *unpackSlotEncoding=nullptr)
 
void tableLookup (Ctxt &out, const std::vector< zzX > &table, const CtPtrs &idx, std::vector< zzX > *unpackSlotEncoding=nullptr)
 
void tableWriteIn (const CtPtrs &table, const CtPtrs &idx, std::vector< zzX > *unpackSlotEncoding=nullptr)
 
void buildLookupTable (std::vector< zzX > &T, std::function< double(double)> f, long nbits_in, long scale_in, long sign_in, long nbits_out, long scale_out, long sign_out, const EncryptedArray &ea)
 Built a table-lookup for a function in fixed-point representation. More...
 
void registerTimer (FHEtimer *timer)
 
unsigned long GetTimerClock ()
 
void setTimersOn ()
 
void setTimersOff ()
 
bool areTimersOn ()
 
const FHEtimergetTimerByName (const char *name)
 
void resetAllTimers ()
 
void printAllTimers (std::ostream &str=std::cerr)
 Print the value of all timers to stream. More...
 
bool printNamedTimer (std::ostream &str, const char *name)
 
template<typename T >
zeroValue (const T &x)
 Given an object x return a zero object of the same type. More...
 
template<>
Ctxt zeroValue< Ctxt > (const Ctxt &x)
 Given a Ctxt return a zero object of the same type. More...
 
template<>
Ptxt< BGVzeroValue< Ptxt< BGV > > (const Ptxt< BGV > &x)
 Given a Ptxt<BGV> return a zero object of the same type. More...
 
template<>
Ptxt< CKKSzeroValue< Ptxt< CKKS > > (const Ptxt< CKKS > &x)
 Given a Ptxt<CKKS> return a zero object of the same type. More...
 
bool IsZero (const zzX &a)
 
void clear (zzX &a)
 
void convert (NTL::zz_pX &x, const zzX &a)
 
void add (zzX &res, const zzX &a, const zzX &b)
 
zzX operator+ (const zzX &a, const zzX &b)
 
zzXoperator+= (zzX &a, const zzX &b)
 
void div (zzX &res, const zzX &a, long b)
 
zzX operator/ (const zzX &a, long b)
 
zzXoperator/= (zzX &a, long b)
 
void mul (zzX &res, const zzX &a, long b)
 
zzX operator* (const zzX &a, long b)
 
zzXoperator*= (zzX &a, long b)
 
void normalize (zzX &f)
 
void MulMod (zzX &res, const zzX &a, const zzX &b, const PAlgebra &palg)
 
zzX MulMod (const zzX &a, const zzX &b, const PAlgebra &palg)
 
zzX balanced_zzX (const NTL::zz_pX &f)
 
zzX balanced_zzX (const NTL::GF2X &f)
 
long defaultPmiddle (long delta)
 
long defaultQmiddle (long delta)
 
void runningSums (CtPtrs &v)
 
void compareTwoNumbersImplementation (CtPtrs &max, CtPtrs &min, Ctxt &mu, Ctxt &ni, const CtPtrs &aa, const CtPtrs &bb, bool twosComplement, std::vector< zzX > *unpackSlotEncoding, bool cmp_only)
 
void BluesteinFFT (NTL::zz_pX &x, long n, UNUSED const NTL::zz_p &root, const NTL::zz_pX &powers, const NTL::Vec< NTL::mulmod_precon_t > &powers_aux, const NTL::fftRep &Rb)
 
NTL::zz_pContext BuildContext (long p, long maxroot)
 
std::ostream & operator<< (std::ostream &str, const Context &context)
 
std::istream & operator>> (std::istream &str, Context &context)
 
NTL::ZZX getG (const EncryptedArray &ea)
 
void addSomePrimes (Ctxt &c)
 
void computeIntervalForMul (double &lo, double &hi, const Ctxt &ctxt1, const Ctxt &ctxt2)
 
void computeIntervalForSqr (double &lo, double &hi, const Ctxt &ctxt)
 
std::istream & operator>> (std::istream &str, SKHandle &handle)
 
std::ostream & operator<< (std::ostream &str, const Ctxt &ctxt)
 
std::istream & operator>> (std::istream &str, Ctxt &ctxt)
 
double log2_realToEstimatedNoise (const Ctxt &ctxt, const SecKey &sk)
 
template DoubleCRTDoubleCRT::Op< DoubleCRT::AddFun > (const DoubleCRT &other, AddFun fun, bool matchIndexSets)
 
template DoubleCRTDoubleCRT::Op< DoubleCRT::SubFun > (const DoubleCRT &other, SubFun fun, bool matchIndexSets)
 
template DoubleCRTDoubleCRT::Op< DoubleCRT::MulFun > (const NTL::ZZ &num, MulFun fun)
 
template DoubleCRTDoubleCRT::Op< DoubleCRT::AddFun > (const NTL::ZZ &num, AddFun fun)
 
template DoubleCRTDoubleCRT::Op< DoubleCRT::SubFun > (const NTL::ZZ &num, SubFun fun)
 
template DoubleCRTDoubleCRT::Op< DoubleCRT::MulFun > (const NTL::ZZX &poly, MulFun fun)
 
template DoubleCRTDoubleCRT::Op< DoubleCRT::AddFun > (const NTL::ZZX &poly, AddFun fun)
 
template DoubleCRTDoubleCRT::Op< DoubleCRT::SubFun > (const NTL::ZZX &poly, SubFun fun)
 
std::ostream & operator<< (std::ostream &str, const DoubleCRT &d)
 
std::istream & operator>> (std::istream &str, DoubleCRT &d)
 
void totalSums (const EncryptedArray &ea, Ctxt &ctxt)
 
void applyLinPoly1 (const EncryptedArray &ea, Ctxt &ctxt, const std::vector< NTL::ZZX > &C)
 
void applyLinPolyMany (const EncryptedArray &ea, Ctxt &ctxt, const std::vector< std::vector< NTL::ZZX >> &Cvec)
 
template<typename P >
void applyLinPolyLL (Ctxt &ctxt, const std::vector< P > &encodedC, long d)
 
template void applyLinPolyLL (Ctxt &ctxt, const std::vector< zzX > &encodedC, long d)
 
template void applyLinPolyLL (Ctxt &ctxt, const std::vector< NTL::ZZX > &encodedC, long d)
 
template void applyLinPolyLL (Ctxt &ctxt, const std::vector< DoubleCRT > &encodedC, long d)
 
void print (const EncryptedArray &ea, std::ostream &s, const PlaintextArray &pa)
 
void mapTo01 (const EncryptedArray &ea, Ctxt &ctxt)
 
template<typename Scheme >
void mapTo01 (const EncryptedArray &, Ptxt< Scheme > &ptxt)
 
template void mapTo01 (const EncryptedArray &, Ptxt< BGV > &ptxt)
 
template void mapTo01 (const EncryptedArray &, Ptxt< CKKS > &ptxt)
 
void fastPower (Ctxt &ctxt, long d)
 
void incrementalZeroTest (Ctxt *res[], const EncryptedArray &ea, const Ctxt &ctxt, long n)
 
void RelaxedInv (NTL::Mat< NTL::zz_p > &x, const NTL::Mat< NTL::zz_p > &a)
 
void RelaxedInv (NTL::Mat< NTL::GF2 > &x, const NTL::Mat< NTL::GF2 > &a)
 
void TraceMap (NTL::GF2X &w, const NTL::GF2X &a, long d, const NTL::GF2XModulus &F, const NTL::GF2X &b)
 
template void getHyperColumn (NTL::Vec< long > &v, const ConstCubeSlice< long > &s, long pos)
 
template void setHyperColumn (const NTL::Vec< long > &v, const CubeSlice< long > &s, long pos)
 
template void setHyperColumn (const NTL::Vec< long > &v, const CubeSlice< long > &s, long pos, const long &val)
 
template void print3D (const HyperCube< long > &c)
 
template void getHyperColumn (NTL::Vec< NTL::zz_p > &v, const ConstCubeSlice< NTL::zz_p > &s, long pos)
 
template void setHyperColumn (const NTL::Vec< NTL::zz_p > &v, const CubeSlice< NTL::zz_p > &s, long pos)
 
template void setHyperColumn (const NTL::Vec< NTL::zz_p > &v, const CubeSlice< NTL::zz_p > &s, long pos, const NTL::zz_p &val)
 
template void print3D (const HyperCube< NTL::zz_p > &c)
 
std::ostream & operator<< (std::ostream &str, const PubKey &pk)
 
std::istream & operator>> (std::istream &str, PubKey &pk)
 
std::ostream & operator<< (std::ostream &str, const SecKey &sk)
 
std::istream & operator>> (std::istream &str, SecKey &sk)
 
void printFlow (FlowGraph &fg)
 
std::shared_ptr< GeneralAutomorphPreconbuildGeneralAutomorphPrecon (const Ctxt &ctxt, long dim, const EncryptedArray &ea)
 
template<typename RX >
std::shared_ptr< ConstMultiplierbuild_ConstMultiplier (const RX &poly)
 
template<typename RX , typename type >
std::shared_ptr< ConstMultiplierbuild_ConstMultiplier (const RX &poly, long dim, long amt, const EncryptedArrayDerived< type > &ea)
 
void MulAdd (Ctxt &x, const std::shared_ptr< ConstMultiplier > &a, const Ctxt &b)
 
void DestMulAdd (Ctxt &x, const std::shared_ptr< ConstMultiplier > &a, Ctxt &b)
 
void plaintextAutomorph_CKKS (zzX &b, const zzX &a, long j, const EncryptedArrayCx &ea)
 
void GenBabySteps (std::vector< std::shared_ptr< Ctxt >> &v, const Ctxt &ctxt, long dim, bool clean)
 
template<typename zp , typename zz >
void FindPrimRootT (zp &root, unsigned long e)
 
template bool intVecCRT (NTL::vec_ZZ &, const NTL::ZZ &, const NTL::vec_ZZ &, long)
 
template bool intVecCRT (NTL::vec_ZZ &, const NTL::ZZ &, const NTL::vec_long &, long)
 
template bool intVecCRT (NTL::vec_ZZ &, const NTL::ZZ &, const NTL::Vec< NTL::zz_p > &, long)
 
void removeDups (std::list< long > &x, bool *aux)
 
void addOffset (std::list< long > &x, long offset, long n, bool *aux, UNUSED bool good=false)
 
long reducedCount (const std::list< long > &x, long n, bool *aux)
 
void buildBenesCostTable (long n, long k, bool good, NTL::Vec< NTL::Vec< long >> &tab)
 
std::ostream & operator<< (std::ostream &s, LongNodePtr p)
 
BenesMemoEntry optimalBenesAux (long i, long budget, long nlev, const NTL::Vec< NTL::Vec< long >> &costTab, BenesMemoTable &memoTab)
 
void optimalBenes (long n, long budget, bool good, long &cost, LongNodePtr &solution)
 
void print (std::ostream &s, SplitNodePtr p, bool first)
 
std::ostream & operator<< (std::ostream &s, SplitNodePtr p)
 
long length (GenNodePtr ptr)
 
std::ostream & operator<< (std::ostream &s, GenNodePtr p)
 
LowerMemoEntry optimalLower (long order, bool good, long budget, long mid, LowerMemoTable &lowerMemoTable)
 
UpperMemoEntry optimalUpperAux (const NTL::Vec< GenDescriptor > &vec, long i, long budget, long mid, UpperMemoTable &upperMemoTable, LowerMemoTable &lowerMemoTable)
 
template<typename RX >
bool poly_comp (const RX &a, const RX &b)
 
bool less_than (NTL::GF2 a, NTL::GF2 b)
 
bool less_than (NTL::zz_p a, NTL::zz_p b)
 
bool less_than (const NTL::GF2X &a, const NTL::GF2X &b)
 
bool less_than (const NTL::zz_pX &a, const NTL::zz_pX &b)
 
bool less_than (const NTL::GF2E &a, const NTL::GF2E &b)
 
bool less_than (const NTL::zz_pE &a, const NTL::zz_pE &b)
 
bool less_than (const NTL::GF2EX &a, const NTL::GF2EX &b)
 
bool less_than (const NTL::zz_pEX &a, const NTL::zz_pEX &b)
 
bool comparePAlgebra (const PAlgebra &palg, unsigned long m, unsigned long p, UNUSED unsigned long r, const std::vector< long > &gens, const std::vector< long > &ords)
 
template<typename T >
void PAlgebraLift (const NTL::ZZX &phimx, const T &lfactors, T &factors, T &crtc, long r)
 
void EDF (NTL::vec_zz_pX &v, const NTL::zz_pX &f, long d)
 
NTL::zz_pEX FrobeniusMap (const NTL::zz_pEXModulus &F)
 
void InvModpr (NTL::zz_pX &S, const NTL::zz_pX &F, const NTL::zz_pX &G, long p, long r)
 
template<>
void PAlgebraLift (const NTL::ZZX &phimx, const NTL::vec_zz_pX &lfactors, NTL::vec_zz_pX &factors, NTL::vec_zz_pX &crtc, long r)
 
std::ostream & operator<< (std::ostream &s, const PermNetwork &net)
 
template void applyPermToVec< long > (NTL::Vec< long > &out, const NTL::Vec< long > &in, const Permut &p1)
 
template void applyPermToVec< long > (std::vector< long > &out, const std::vector< long > &in, const Permut &p1)
 
template void applyPermToVec< NTL::ZZX > (std::vector< NTL::ZZX > &out, const std::vector< NTL::ZZX > &in, const Permut &p1)
 
template void applyPermsToVec< long > (NTL::Vec< long > &out, const NTL::Vec< long > &in, const Permut &p2, const Permut &p1)
 
template void applyPermsToVec< long > (std::vector< long > &out, const std::vector< long > &in, const Permut &p2, const Permut &p1)
 
void breakPermTo3 (const HyperCube< long > &pi, long dim, ColPerm &rho1, HyperCube< long > &rho2, ColPerm &rho3)
 
void ComputeOneGenMapping (Permut &genMap, const OneGeneratorTree &T)
 to a single generator tree More...
 
std::ostream & operator<< (std::ostream &s, const SubDimension &sd)
 
std::ostream & operator<< (std::ostream &s, const GeneratorTrees &trees)
 
void deserialize (std::istream &is, PolyMod &poly)
 
void serialize (std::ostream &os, const PolyMod &poly)
 
std::istream & operator>> (std::istream &is, PolyMod &poly)
 
std::ostream & operator<< (std::ostream &os, const PolyMod &poly)
 
std::ostream & operator<< (std::ostream &os, const PolyModRing &ring)
 
void computeDivVec (NTL::Vec< long > &divVec, long m, const NTL::Vec< long > &powVec)
 
void computeInvVec (NTL::Vec< long > &invVec, const NTL::Vec< long > &divVec, const NTL::Vec< long > &powVec)
 
bool operator> (const ModuliSizes::Entry &a, const ModuliSizes::Entry &b)
 
std::ostream & operator<< (std::ostream &s, const ModuliSizes &szs)
 
std::istream & operator>> (std::istream &s, ModuliSizes &szs)
 
template<typename Scheme >
Scheme::SlotType randomSlot (const Context &context)
 
template<>
BGV::SlotType randomSlot< BGV > (const Context &context)
 
template<>
CKKS::SlotType randomSlot< CKKS > (UNUSED const Context &context)
 
template void deserialize< BGV > (std::istream &is, Ptxt< BGV > &ptxt)
 
template void deserialize< CKKS > (std::istream &is, Ptxt< CKKS > &ptxt)
 
template void serialize< BGV > (std::ostream &os, const Ptxt< BGV > &ptxt)
 
template void serialize< CKKS > (std::ostream &os, const Ptxt< CKKS > &ptxt)
 
template std::istream & operator>><BGV > (std::istream &is, Ptxt< BGV > &ptxt)
 
template std::istream & operator>><CKKS > (std::istream &is, Ptxt< CKKS > &ptxt)
 
template std::ostream & operator<<<BGV > (std::ostream &os, const Ptxt< BGV > &ptxt)
 
template std::ostream & operator<<<CKKS > (std::ostream &os, const Ptxt< CKKS > &ptxt)
 
void extractDigitsPacked (Ctxt &ctxt, long botHigh, long r, long ePrime, const std::vector< NTL::ZZX > &unpackSlotEncoding)
 
void extractDigitsThin (Ctxt &ctxt, long botHigh, long r, long ePrime)
 
double boundRoundingNoise (UNUSED long m, long phim, long p2r, double epsilon)
 
bool timer_compare (const FHEtimer *a, const FHEtimer *b)
 

Variables

ContextactiveContext = nullptr
 
SecKeydbgKey = nullptr
 
std::shared_ptr< const EncryptedArraydbgEa = nullptr
 
NTL::ZZX dbg_ptxt
 
bool fhe_stats = false
 
Logger helog
 Internal global logger. More...
 
int fhe_test_force_bsgs = 0
 
int fhe_test_force_hoist = 0
 
const long double PI
 
const double erfc_inverse []
 
long thinRecrypt_initial_level
 
long fhe_force_chen_han = 0
 
long printFlag
 
NTL_THREAD_LOCAL bool replicateVerboseFlag = false
 
int fhe_watcher = 0
 
const unsigned long CLOCK_SCALE = (unsigned long)CLOCKS_PER_SEC
 

Strategies for generating key-switching matrices

These functions are implemented in KeySwitching.cpp

long KSGiantStepSize (long D)
 Function that returns number of baby steps. Used to keep this and matmul routines "in sync". More...
 
void addAllMatrices (SecKey &sKey, long keyID=0)
 Maximalistic approach: generate matrices s(X^e)->s(X) for all e in Zm*. More...
 
void addFewMatrices (SecKey &sKey, long keyID=0)
 Generate matrices so every s(X^e) can be reLinearized in at most two steps. More...
 
void addSome1DMatrices (SecKey &sKey, long bound=HELIB_KEYSWITCH_THRESH, long keyID=0)
 Generate some matrices of the form s(X^{g^i})->s(X), but not all. For a generator g whose order is larger than bound, generate only enough matrices for the giant-step/baby-step procedures (2*sqrt(ord(g))of them). More...
 
void add1DMatrices (SecKey &sKey, long keyID=0)
 Generate all matrices s(X^{g^i})->s(X) for generators g of Zm* /(p) and i<ord(g). If g has different orders in Zm* and Zm* /(p) then generate also matrices of the form s(X^{g^{-i}})->s(X) More...
 
void addBSGS1DMatrices (SecKey &sKey, long keyID=0)
 
void addSomeFrbMatrices (SecKey &sKey, long bound=HELIB_KEYSWITCH_THRESH, long keyID=0)
 Generate all/some Frobenius matrices of the form s(X^{p^i})->s(X) More...
 
void addFrbMatrices (SecKey &sKey, long keyID=0)
 
void addBSGSFrbMatrices (SecKey &sKey, long keyID=0)
 
void addMinimal1DMatrices (SecKey &sKey, long keyID=0)
 These routines just add a single matrix (or two, for bad dimensions) More...
 
void addMinimalFrbMatrices (SecKey &sKey, long keyID=0)
 
void addMatrices4Network (SecKey &sKey, const PermNetwork &net, long keyID=0)
 
void addTheseMatrices (SecKey &sKey, const std::set< long > &automVals, long keyID=0)
 Generate specific key-switching matrices, described by the given set. More...
 
void PolyRed (NTL::ZZX &out, const NTL::ZZX &in, long q, bool abs=false)
 Reduce all the coefficients of a polynomial modulo q. More...
 
void PolyRed (NTL::ZZX &out, const NTL::ZZX &in, const NTL::ZZ &q, bool abs=false)
 
void PolyRed (NTL::ZZX &F, long q, bool abs=false)
 
void PolyRed (NTL::ZZX &F, const NTL::ZZ &q, bool abs=false)
 
void vecRed (NTL::Vec< NTL::ZZ > &out, const NTL::Vec< NTL::ZZ > &in, long q, bool abs)
 
void vecRed (NTL::Vec< NTL::ZZ > &out, const NTL::Vec< NTL::ZZ > &in, const NTL::ZZ &q, bool abs)
 

Some enhanced conversion routines

void convert (long &x1, const NTL::GF2X &x2)
 
void convert (long &x1, const NTL::zz_pX &x2)
 
void convert (NTL::vec_zz_pE &X, const std::vector< NTL::ZZX > &A)
 
void convert (NTL::mat_zz_pE &X, const std::vector< std::vector< NTL::ZZX >> &A)
 
void convert (std::vector< NTL::ZZX > &X, const NTL::vec_zz_pE &A)
 
void convert (std::vector< std::vector< NTL::ZZX >> &X, const NTL::mat_zz_pE &A)
 
void convert (NTL::Vec< long > &out, const NTL::ZZX &in)
 
void convert (NTL::Vec< long > &out, const NTL::zz_pX &in, bool symmetric=true)
 
void convert (NTL::Vec< long > &out, const NTL::GF2X &in)
 
void convert (NTL::ZZX &out, const NTL::Vec< long > &in)
 
void convert (NTL::GF2X &out, const NTL::Vec< long > &in)
 
double boundFreshNoise (long m, long phim, double sigma, double epsilon=9e-13)
 
double boundRoundingNoise (long m, long phim, long p2r, double epsilon=9e-13)
 

Typedef Documentation

◆ aligned_vector

template<class T >
using helib::aligned_vector = typedef PGFFT::aligned_vector<T>

◆ cmplx_t

typedef complex<double> helib::cmplx_t

◆ CtPtrMat

◆ CtPtrMat_ptVecCt

◆ CtPtrMat_ptvectorCt

◆ CtPtrMat_VecCt

◆ CtPtrMat_vectorCt

◆ CtPtrs

◆ CtPtrs_slice

◆ CtPtrs_VecCt

◆ CtPtrs_VecPt

◆ CtPtrs_vectorCt

◆ CtPtrs_vectorPt

◆ cx_double

typedef std::complex< double > helib::cx_double

◆ DCRTptr

typedef std::shared_ptr<DoubleCRT> helib::DCRTptr

◆ FlowGraph

typedef std::vector<FNeighborList> helib::FlowGraph

◆ FNeighborList

typedef std::unordered_map<long, FlowEdge> helib::FNeighborList

◆ ldbl

typedef long double helib::ldbl

◆ LNeighborList

typedef std::unordered_multimap<long, LabeledEdge> helib::LNeighborList

◆ LONG

typedef long helib::LONG

◆ Matrix

template<typename T >
using helib::Matrix = typedef Tensor<T, 2>

◆ NodeIdx

typedef std::pair<long, long> helib::NodeIdx

◆ OneGeneratorTree

◆ Permut

typedef NTL::Vec<long> helib::Permut

A simple permutation is just a vector with p[i]=\pi_i.

◆ QueryExpr

using helib::QueryExpr = typedef std::shared_ptr<Expr>

An alias for a shared pointer to an Expr object.

◆ Vector

template<typename T >
using helib::Vector = typedef Tensor<T, 1>

◆ zzX

typedef NTL::Vec<long> helib::zzX

◆ ZZXptr

typedef std::shared_ptr<NTL::ZZX> helib::ZZXptr

Enumeration Type Documentation

◆ PA_tag

Enumerator
PA_GF2_tag 
PA_zz_p_tag 
PA_cx_tag 

Function Documentation

◆ add() [1/3]

void helib::add ( const EncryptedArray ea,
PlaintextArray pa,
const PlaintextArray other 
)

◆ add() [2/3]

void helib::add ( std::vector< NTL::ZZX > &  x,
const std::vector< NTL::ZZX > &  a,
const std::vector< NTL::ZZX > &  b 
)

◆ add() [3/3]

void helib::add ( zzX res,
const zzX a,
const zzX b 
)

◆ add1DMatrices()

void helib::add1DMatrices ( SecKey sKey,
long  keyID = 0 
)

Generate all matrices s(X^{g^i})->s(X) for generators g of Zm* /(p) and i<ord(g). If g has different orders in Zm* and Zm* /(p) then generate also matrices of the form s(X^{g^{-i}})->s(X)

◆ addAllMatrices()

void helib::addAllMatrices ( SecKey sKey,
long  keyID = 0 
)

Maximalistic approach: generate matrices s(X^e)->s(X) for all e in Zm*.

◆ addBSGS1DMatrices()

void helib::addBSGS1DMatrices ( SecKey sKey,
long  keyID = 0 
)

◆ addBSGSFrbMatrices()

void helib::addBSGSFrbMatrices ( SecKey sKey,
long  keyID = 0 
)

◆ addFewMatrices()

void helib::addFewMatrices ( SecKey sKey,
long  keyID = 0 
)

Generate matrices so every s(X^e) can be reLinearized in at most two steps.

◆ addFrbMatrices()

void helib::addFrbMatrices ( SecKey sKey,
long  keyID = 0 
)

◆ addManyNumbers()

void helib::addManyNumbers ( CtPtrs sum,
CtPtrMat numbers,
long  sizeLimit = 0,
std::vector< zzX > *  unpackSlotEncoding = nullptr 
)

Sum an arbitrary amount of numbers in binary representation.

Parameters
sumresult of the summation.
numbersvalues of which to sum.
sizeLimitnumber of bits to compute on, taken from the least significant end.
unpackSlotEncodingvector of constants for unpacking, as used in bootstrapping.

Calculates the sum of many numbers using the 3-for-2 method.

◆ addMatrices4Network()

void helib::addMatrices4Network ( SecKey sKey,
const PermNetwork net,
long  keyID = 0 
)

◆ addMinimal1DMatrices()

void helib::addMinimal1DMatrices ( SecKey sKey,
long  keyID = 0 
)

These routines just add a single matrix (or two, for bad dimensions)

◆ addMinimalFrbMatrices()

void helib::addMinimalFrbMatrices ( SecKey sKey,
long  keyID = 0 
)

◆ addOffset()

void helib::addOffset ( std::list< long > &  x,
long  offset,
long  n,
bool *  aux,
UNUSED bool  good = false 
)

◆ addSome1DMatrices()

void helib::addSome1DMatrices ( SecKey sKey,
long  bound = HELIB_KEYSWITCH_THRESH,
long  keyID = 0 
)

Generate some matrices of the form s(X^{g^i})->s(X), but not all. For a generator g whose order is larger than bound, generate only enough matrices for the giant-step/baby-step procedures (2*sqrt(ord(g))of them).

◆ addSomeFrbMatrices()

void helib::addSomeFrbMatrices ( SecKey sKey,
long  bound = HELIB_KEYSWITCH_THRESH,
long  keyID = 0 
)

Generate all/some Frobenius matrices of the form s(X^{p^i})->s(X)

◆ addSomePrimes()

void helib::addSomePrimes ( Ctxt c)

◆ addTheseMatrices()

void helib::addTheseMatrices ( SecKey sKey,
const std::set< long > &  automVals,
long  keyID = 0 
)

Generate specific key-switching matrices, described by the given set.

◆ addTwoNumbers()

void helib::addTwoNumbers ( CtPtrs sum,
const CtPtrs lhs,
const CtPtrs rhs,
long  sizeLimit = 0,
std::vector< zzX > *  unpackSlotEncoding = nullptr 
)

Adds two numbers in binary representation where each ciphertext of the input vector contains a bit.

Add two integers in binary representation.

Parameters
sumresult of the addition operation.
lhsleft hand side of the addition.
rhsright hand side of the addition.
sizeLimitnumber of bits to compute on, taken from the least significant end.
unpackSlotEncodingvector of constants for unpacking, as used in bootstrapping.

◆ applyLinPoly() [1/2]

void helib::applyLinPoly ( NTL::GF2E &  beta,
const NTL::vec_GF2E &  C,
const NTL::GF2E &  alpha,
long  p 
)

A version for GF2: must be called with p == 2 and r == 1.

◆ applyLinPoly() [2/2]

void helib::applyLinPoly ( NTL::zz_pE &  beta,
const NTL::vec_zz_pE &  C,
const NTL::zz_pE &  alpha,
long  p 
)

Apply a linearized polynomial with coefficient vector C.

NTL's current smallint modulus, zz_p::modulus(), is assumed to be p^r, for p prime, r >= 1 integer.

◆ applyLinPoly1()

void helib::applyLinPoly1 ( const EncryptedArray ea,
Ctxt ctxt,
const std::vector< NTL::ZZX > &  C 
)

◆ applyLinPolyLL() [1/4]

template void helib::applyLinPolyLL ( Ctxt ctxt,
const std::vector< DoubleCRT > &  encodedC,
long  d 
)

◆ applyLinPolyLL() [2/4]

template void helib::applyLinPolyLL ( Ctxt ctxt,
const std::vector< NTL::ZZX > &  encodedC,
long  d 
)

◆ applyLinPolyLL() [3/4]

template<typename P >
void helib::applyLinPolyLL ( Ctxt ctxt,
const std::vector< P > &  encodedC,
long  d 
)

◆ applyLinPolyLL() [4/4]

template void helib::applyLinPolyLL ( Ctxt ctxt,
const std::vector< zzX > &  encodedC,
long  d 
)

◆ applyLinPolyMany()

void helib::applyLinPolyMany ( const EncryptedArray ea,
Ctxt ctxt,
const std::vector< std::vector< NTL::ZZX >> &  Cvec 
)

◆ applyPerm()

void helib::applyPerm ( const EncryptedArray ea,
PlaintextArray pa,
const NTL::Vec< long > &  pi 
)

◆ applyPermsToVec() [1/2]

template<typename T >
void helib::applyPermsToVec ( NTL::Vec< T > &  out,
const NTL::Vec< T > &  in,
const Permut p2,
const Permut p1 
)

Apply two permutations to a std::vector out[i]=in[p2[p1[i]]] (NOT in-place)

◆ applyPermsToVec() [2/2]

template<typename T >
void helib::applyPermsToVec ( std::vector< T > &  out,
const std::vector< T > &  in,
const Permut p2,
const Permut p1 
)

◆ applyPermsToVec< long >() [1/2]

template void helib::applyPermsToVec< long > ( NTL::Vec< long > &  out,
const NTL::Vec< long > &  in,
const Permut p2,
const Permut p1 
)

◆ applyPermsToVec< long >() [2/2]

template void helib::applyPermsToVec< long > ( std::vector< long > &  out,
const std::vector< long > &  in,
const Permut p2,
const Permut p1 
)

◆ applyPermToVec() [1/2]

template<typename T >
void helib::applyPermToVec ( NTL::Vec< T > &  out,
const NTL::Vec< T > &  in,
const Permut p1 
)

Apply a permutation to a std::vector, out[i]=in[p1[i]] (NOT in-place)

◆ applyPermToVec() [2/2]

template<typename T >
void helib::applyPermToVec ( std::vector< T > &  out,
const std::vector< T > &  in,
const Permut p1 
)

◆ applyPermToVec< long >() [1/2]

template void helib::applyPermToVec< long > ( NTL::Vec< long > &  out,
const NTL::Vec< long > &  in,
const Permut p1 
)

◆ applyPermToVec< long >() [2/2]

template void helib::applyPermToVec< long > ( std::vector< long > &  out,
const std::vector< long > &  in,
const Permut p1 
)

◆ applyPermToVec< NTL::ZZX >()

template void helib::applyPermToVec< NTL::ZZX > ( std::vector< NTL::ZZX > &  out,
const std::vector< NTL::ZZX > &  in,
const Permut p1 
)

◆ areTimersOn()

bool helib::areTimersOn ( )
inline

◆ argmax() [1/2]

long helib::argmax ( std::vector< long > &  v,
bool(*)(long, long)  moreThan 
)
inline

A variant with a specialized comparison function (*moreThan)(a,b) returns the comparison a>b.

◆ argmax() [2/2]

template<typename T >
long helib::argmax ( std::vector< T > &  v)

◆ argmin()

template<typename T >
long helib::argmin ( std::vector< T > &  v)

◆ argminmax()

template<typename T , bool maxFlag>
long helib::argminmax ( std::vector< T > &  v)

Find the index of the (first) largest/smallest element.

These procedures are roughly just simpler variants of std::max_element and std::min_element. argmin/argmax are implemented as a template, so the code must be placed in the header file for the compiler to find it. The class T must have an implementation of operator> and operator< for this template to work.

Template Parameters
maxFlagA boolean value: true - argmax, false - argmin

◆ assertEq()

template<typename ExceptionTy = ::helib::LogicError, typename T = void>
void helib::assertEq ( const T &  a,
const T &  b,
const std::string &  message 
)
inline

Function throwing an exception of type ExceptionTy if the two arguments are not equal.

Template Parameters
ExceptionTytype of the exception thrown.
Ttype of the elements to be compared.
Parameters
athe first element to be compared.
bthe second element to be compared.
messagethe message of the exception raised if the two values are not equal.
Exceptions
ExceptionTyexception if the two values are not equal.
Note
ExceptionTy first and T defaulted to void so that one can specify only ExceptionTy, letting T be inferred from the argument passed.

◆ assertFalse()

template<typename ExceptionTy = ::helib::LogicError, typename T = void>
void helib::assertFalse ( value,
const std::string &  message 
)
inline

Function throwing an exception of type ExceptionTy if the condition is true.

Template Parameters
ExceptionTytype of the exception thrown.
Ttype of the condition being checked (must be a bool).
Parameters
valuethe condition being checked.
messagethe message of the exception raised if the condition is true.
Exceptions
ExceptionTyexception if condition is true.
Note
ExceptionTy first and T defaulted to void so that one can specify only ExceptionTy, letting T be inferred from the argument passed.

◆ assertInRange()

template<typename ExceptionTy = ::helib::OutOfRangeError, typename T = void>
void helib::assertInRange ( const T &  elem,
const T &  min,
const T &  max,
const std::string &  message,
bool  right_inclusive = false 
)
inline

Function throwing an exception of type ExceptionTy if the element is in the range [min,max) or [min, max]

Template Parameters
ExceptionTytype of the exception thrown.
Ttype of the element (and of the range).
Parameters
elemthe element to be tested.
minthe left side of the range (always inclusive).
maxthe right side of the range (default exclusive).
messagethe message of the exception raised if the element is not in the range.
right_inclusiveflag specifying if the right side is inclusive (default false).
Exceptions
ExceptionTyexception if elem is not in the range
Note
ExceptionTy first and T defaulted to void so that one can specify only ExceptionTy, letting T be inferred from the argument passed.

◆ assertNeq()

template<typename ExceptionTy = ::helib::LogicError, typename T = void>
void helib::assertNeq ( const T &  a,
const T &  b,
const std::string &  message 
)
inline

Function throwing an exception of type ExceptionTy if the two arguments are equal.

Template Parameters
ExceptionTytype of the exception thrown.
Ttype of the elements to be compared.
Parameters
athe first element to be compared.
bthe second element to be compared.
messagethe message of the exception raised if the two values are equal.
Exceptions
ExceptionTyexception if the two values are equal.
Note
ExceptionTy first and T defaulted to void so that one can specify only ExceptionTy, letting T be inferred from the argument passed.

◆ assertNotNull()

template<typename ExceptionTy = ::helib::LogicError, typename T = void>
void helib::assertNotNull ( const T &  p,
const std::string &  message 
)
inline

Function throwing an exception of type ExceptionTy if the argument is nullptr.

Template Parameters
ExceptionTytype of the exception thrown.
Ttype of the element.
Parameters
pthe element to be tested.
messagethe message of the exception raised if the element is nullptr.
Exceptions
ExceptionTyexception if p is nullptr.
Note
ExceptionTy first and T defaulted to void so that one can specify only ExceptionTy, letting T be inferred from the argument passed.

◆ assertTrue()

template<typename ExceptionTy = ::helib::LogicError, typename T = void>
void helib::assertTrue ( const T &  value,
const std::string &  message 
)
inline

Function throwing an exception of type ExceptionTy if the condition is false.

Template Parameters
ExceptionTytype of the exception thrown.
Ttype of the condition being checked (must be a bool).
Parameters
valuethe condition being checked.
messagethe message of the exception raised if the condition is false.
Exceptions
ExceptionTyexception if condition is false.
Note
ExceptionTy first and T defaulted to void so that one can specify only ExceptionTy, letting T be inferred from the argument passed.

◆ atoVec()

template<typename T >
NTL::Vec<T> helib::atoVec ( const char *  a)

◆ atovector()

template<typename T >
std::vector<T> helib::atovector ( const char *  a)

◆ balanced_MulMod()

void helib::balanced_MulMod ( NTL::ZZX &  out,
const NTL::ZZX &  f,
long  a,
long  q 
)

Multiply the polynomial f by the integer a modulo q output coefficients are balanced (appropriately randomized for even q)

◆ balanced_zzX() [1/2]

zzX helib::balanced_zzX ( const NTL::GF2X &  f)

◆ balanced_zzX() [2/2]

zzX helib::balanced_zzX ( const NTL::zz_pX &  f)

◆ balRem()

long helib::balRem ( long  a,
long  q 
)
inline

Return balanced remainder. Assumes a in [0, q) and returns balanced remainder in (-q/2, q/2]

◆ binaryCond()

void helib::binaryCond ( CtPtrs output,
const Ctxt cond,
const CtPtrs trueValue,
const CtPtrs falseValue 
)

Implementation of output = cond * trueValue + (1 - cond) * falseValue.

Implementation of output = cond ? trueValue : falseValue.

Parameters
outputEqual to trueValue in slots where cond is one and falseValue in slots where cond is zero.
condThe condition, namely a Ctxt containing elements of {0,1} in each slot.
trueValueValue of output wherever cond is one.
falseValueValue of output wherever cond is zero.
Note
trueValue, falseValue and output must have the same size.

◆ binaryMask()

void helib::binaryMask ( CtPtrs binaryNums,
const Ctxt mask 
)

Zeroes the slots of binaryNums where the corresponding slot of mask is 0.

Apply mask across the vector of bits slot-wise.

Parameters
binaryNumsInput bits on which to mask (this is done in place).
maskEncrypted mask indicating desired slots.

◆ binSumReduction()

template<typename TXT >
void helib::binSumReduction ( std::vector< TXT > &  ctxtArray)
inline

Performs a binary summation of a vector of elements.

Template Parameters
TXTtype of the elements of which to sum.
Parameters
ctxtArrayThe array on which to perform the binary sum.
Note
This function is destructive on the array.

◆ bitSetToLong()

long helib::bitSetToLong ( long  bits,
long  bitSize 
)

Considers bits as a vector of bits and returns the value it represents when interpreted as a n-bit 2's complement number, where n is given by bitSize.

Parameters
bitsThe value containing the bits to be reinterpreted.
bitSizeThe number of bits to use, taken from the least significant end of bits.
Returns
The value of the reinterpreted number as a long.

◆ bitwiseAnd() [1/2]

void helib::bitwiseAnd ( CtPtrs output,
const CtPtrs input,
const std::vector< long >  mask 
)

Compute a bitwise AND between input and a std::vector<long>.

Compute a bitwise AND between input and mask.

Parameters
outputEqual to the output of the AND operation.
inputNumber to AND.
maskNumber to AND with input. This should be a vector of elements of {0,1}.
Note
The size of output and input must be the same.

◆ bitwiseAnd() [2/2]

void helib::bitwiseAnd ( CtPtrs output,
const CtPtrs lhs,
const CtPtrs rhs 
)

Compute a bitwise AND between lhs and rhs.

Parameters
outputResult of bitwise lhs AND rhs.
lhsLeft operand to the AND operation.
rhsRight operand to the AND operation.
Note
output, lhs and rhs must all have the same size.

◆ bitwiseNot()

void helib::bitwiseNot ( CtPtrs output,
const CtPtrs input 
)

Compute a bitwise NOT of input.

Parameters
outputResult of bit-flipping input.
inputBinary number to be bit-flipped.
Note
The size of output and input must be the same.

◆ bitwiseOr()

void helib::bitwiseOr ( CtPtrs output,
const CtPtrs lhs,
const CtPtrs rhs 
)

Compute a bitwise OR between lhs and rhs.

Parameters
outputResult of bitwise lhs OR rhs.
lhsLeft operand to the OR operation.
rhsRight operand to the OR operation.
Note
output, lhs and rhs must all have the same size.

◆ bitwiseRotate()

void helib::bitwiseRotate ( CtPtrs output,
const CtPtrs input,
long  rotamt 
)

Rotate input by rotamt.

Rotate binary numbers by rotamt.

Parameters
outputRotated result.
inputThe number to be bitwise-rotated.
rotamtThe amount by which to rotate input. May be negative for opposite-direction rotations.
Note
For positive rotamt arguments, this rotates towards the most-significant end (i.e. the same direction as leftBitwiseShift).
The size of output and input must be the same.

◆ bitwiseXOR()

void helib::bitwiseXOR ( CtPtrs output,
const CtPtrs lhs,
const CtPtrs rhs 
)

Compute a bitwise XOR between lhs and rhs.

Parameters
outputResult of bitwise lhs XOR rhs.
lhsLeft operand to the XOR operation.
rhsRight operand to the XOR operation.
Note
output, lhs and rhs must all have the same size.

◆ BluesteinFFT() [1/2]

void helib::BluesteinFFT ( NTL::zz_pX &  x,
long  n,
const NTL::zz_p &  root,
const NTL::zz_pX &  powers,
const NTL::Vec< NTL::mulmod_precon_t > &  powers_aux,
const NTL::fftRep &  Rb 
)

apply bluestein

◆ BluesteinFFT() [2/2]

void helib::BluesteinFFT ( NTL::zz_pX &  x,
long  n,
UNUSED const NTL::zz_p &  root,
const NTL::zz_pX &  powers,
const NTL::Vec< NTL::mulmod_precon_t > &  powers_aux,
const NTL::fftRep &  Rb 
)

◆ BluesteinInit()

void helib::BluesteinInit ( long  n,
const NTL::zz_p &  root,
NTL::zz_pX &  powers,
NTL::Vec< NTL::mulmod_precon_t > &  powers_aux,
NTL::fftRep &  Rb 
)

initialize bluestein

◆ boundFreshNoise()

double helib::boundFreshNoise ( long  m,
long  phim,
double  sigma,
double  epsilon = 9e-13 
)

Helper functions, return a bound B such that for random noise terms we have Pr[|canonicalEmbed(noise)|_{\infty} > B] < epsilon. (The default is epsilon = 2^{-40}.)

◆ boundRoundingNoise() [1/2]

double helib::boundRoundingNoise ( long  m,
long  phim,
long  p2r,
double  epsilon = 9e-13 
)

◆ boundRoundingNoise() [2/2]

double helib::boundRoundingNoise ( UNUSED long  m,
long  phim,
long  p2r,
double  epsilon 
)

◆ breakPermByDim()

void helib::breakPermByDim ( std::vector< ColPerm > &  out,
const Permut pi,
const CubeSignature sig 
)

Takes a permutation pi over m-dimensional cube C=Z_{n1} x...x Z_{nm} and expresses pi as a product pi = rho_{2m-1} o ... o rho_2 o rho_1 where each rho_i is a column permutation along one dimension. Specifically for i<m, the permutations rho_i and rho_{2(m-1)-i} permute the i'th dimension.

◆ breakPermTo3()

void helib::breakPermTo3 ( const HyperCube< long > &  pi,
long  dim,
ColPerm rho1,
HyperCube< long > &  rho2,
ColPerm rho3 
)

◆ build_ConstMultiplier() [1/2]

template<typename RX >
std::shared_ptr<ConstMultiplier> helib::build_ConstMultiplier ( const RX &  poly)

◆ build_ConstMultiplier() [2/2]

template<typename RX , typename type >
std::shared_ptr<ConstMultiplier> helib::build_ConstMultiplier ( const RX &  poly,
long  dim,
long  amt,
const EncryptedArrayDerived< type > &  ea 
)

◆ buildBenesCostTable()

void helib::buildBenesCostTable ( long  n,
long  k,
bool  good,
NTL::Vec< NTL::Vec< long >> &  tab 
)

◆ BuildContext()

NTL::zz_pContext helib::BuildContext ( long  p,
long  maxroot 
)

◆ buildContextFromAscii()

std::unique_ptr< Context > helib::buildContextFromAscii ( std::istream &  str)

◆ buildContextFromBinary()

std::unique_ptr< Context > helib::buildContextFromBinary ( std::istream &  str)

◆ buildEncryptedArray()

EncryptedArrayBase * helib::buildEncryptedArray ( const Context context,
const PAlgebraMod alMod,
const NTL::ZZX &  G = NTL::ZZX::zero() 
)

A "factory" for building EncryptedArrays.

◆ buildGeneralAutomorphPrecon()

std::shared_ptr<GeneralAutomorphPrecon> helib::buildGeneralAutomorphPrecon ( const Ctxt ctxt,
long  dim,
const EncryptedArray ea 
)

◆ buildLinPolyCoeffs() [1/2]

void helib::buildLinPolyCoeffs ( NTL::vec_GF2E &  C,
const NTL::vec_GF2E &  L,
long  p,
long  r 
)

A version for GF2: must be called with p == 2 and r == 1.

◆ buildLinPolyCoeffs() [2/2]

void helib::buildLinPolyCoeffs ( NTL::vec_zz_pE &  C,
const NTL::vec_zz_pE &  L,
long  p,
long  r 
)

Combination of buildLinPolyMatrix and ppsolve.

Obtain the linearized polynomial coefficients from a vector L representing the action of a linear map on the standard basis for zz_pE over zz_p.

NTL's current smallint modulus, zz_p::modulus(), is assumed to be p^r, for p prime, r >= 1 integer.

◆ buildLinPolyMatrix() [1/2]

void helib::buildLinPolyMatrix ( NTL::mat_GF2E &  M,
long  p 
)

◆ buildLinPolyMatrix() [2/2]

void helib::buildLinPolyMatrix ( NTL::mat_zz_pE &  M,
long  p 
)

◆ buildLookupTable()

void helib::buildLookupTable ( std::vector< zzX > &  T,
std::function< double(double)>  f,
long  nbits_in,
long  scale_in,
long  sign_in,
long  nbits_out,
long  scale_out,
long  sign_out,
const EncryptedArray ea 
)

Built a table-lookup for a function in fixed-point representation.

@function buildLookupTable FIXED-POINT CONVENTIONS: Fixed-point numbers are specified by a triple (nbits,scale,signed). Such a number is represented as an integer x with nbits bits. If signed == 1, then x is treated as a signed integer in 2's compliment; otherwise it is as an unsigned integer. The value represented by x is x*2^{scale}.

The buildLookupTable function builds a lookup table T, which can be used in conjunction with the tableLookup function above. The size of T will be 2^{nbits_in}. For every signed integer x with bit-size 'nbits_in', we will have T[x] = f(x * 2^{scale_in}) * 2^{-scale_out}), rounded to the nearest integer and truncated to 'nbits_out' bits. The bits are packed inside the slots, so it is assumed that each slot has enough room to fit these many bits. (Otherwise we only keep as many low-order bits as fit in a slot.)

SATURATED ARITHMETIC: Applications of f that return a result that is too large to represent in the output format will be converted to the maximum representable value. Similarly, Applications of f that return a result that is too small will be converted to the minimal representable value. (This applies also to applications of f that return infinites, NaNs will just be mapped to zero.) For this to work correctly, you should be working with standard IEEE arithmetic...which will be the case on almost all platforms.

EXAMPLE:

buildLookupTable(T, [](double x){ return 1/x;}, nbits_in, scale_in, nbits_out, scale_out, sign_out, ea)

will build a lookup table for inversion.

◆ buildModChain()

void helib::buildModChain ( Context context,
long  nBits,
long  nDgts = 3,
bool  willBeBootstrappable = false,
long  skHwt = 0,
long  resolution = 3,
long  bitsInSpecialPrimes = 0 
)

◆ buildPAlgebraMod()

PAlgebraModBase * helib::buildPAlgebraMod ( const PAlgebra zMStar,
long  r 
)

Builds a table, of type PA_GF2 if p == 2 and r == 1, and PA_zz_p otherwise.

◆ buildRandomBlockMatrix()

BlockMatMul1D * helib::buildRandomBlockMatrix ( const EncryptedArray ea,
long  dim 
)

◆ buildRandomFullBlockMatrix()

BlockMatMulFull * helib::buildRandomFullBlockMatrix ( const EncryptedArray ea)

◆ buildRandomFullMatrix()

MatMulFull * helib::buildRandomFullMatrix ( const EncryptedArray ea)

◆ buildRandomMatrix()

MatMul1D * helib::buildRandomMatrix ( const EncryptedArray ea,
long  dim 
)

◆ buildRandomMultiBlockMatrix()

BlockMatMul1D * helib::buildRandomMultiBlockMatrix ( const EncryptedArray ea,
long  dim 
)

◆ buildRandomMultiMatrix()

MatMul1D * helib::buildRandomMultiMatrix ( const EncryptedArray ea,
long  dim 
)

◆ buildUnpackSlotEncoding()

void helib::buildUnpackSlotEncoding ( std::vector< zzX > &  unpackSlotEncoding,
const EncryptedArray ea 
)

◆ calcPolyNormBnd()

double helib::calcPolyNormBnd ( long  m)

◆ calculateMasks() [1/2]

template<typename TXT >
Matrix<Ctxt> helib::calculateMasks ( const EncryptedArray ea,
Matrix< TXT >  query,
const Matrix< Ctxt > &  database 
)

Given a query set and a database, calculates a mask of {0,1} where 1 signifies a matching element and 0 otherwise.

Template Parameters
TXTtype of the query set. Must be a Ptxt or Ctxt.
Parameters
eaThe encrypted array object holding information about the scheme.
queryThe query set to mask against the database. Must be a row vector of the same dimension as the second dimension of the database matrix.
databaseThe matrix holding the encrypted database.
Returns
The calculated mask. Is the same size as the database.
Note
This is an overloaded function for when the database is encrypted.

◆ calculateMasks() [2/2]

template<typename TXT >
Matrix<TXT> helib::calculateMasks ( const EncryptedArray ea,
Matrix< TXT >  query,
const Matrix< Ptxt< BGV >> &  database 
)
inline

Given a query set and a database, calculates a mask of {0,1} where 1 signifies a matching element and 0 otherwise.

Template Parameters
TXTtype of the query set. Must be a Ptxt or Ctxt.
Parameters
eaThe encrypted array object holding information about the scheme.
queryThe query set to mask against the database. Must be a row vector of the same dimension as the second dimension of the database matrix.
databaseThe matrix holding the plaintext database.
Returns
The calculated mask. Is the same size as the database.
Note
This is an overloaded function for when the database is not encrypted.

◆ calculateScores()

template<typename TXT >
Matrix<TXT> helib::calculateScores ( const std::vector< std::vector< long >>  index_sets,
const std::vector< long > &  offsets,
const std::vector< Matrix< long >> &  weights,
const Matrix< TXT > &  mask 
)
inline

Given a mask and information about the query to be performed, calculates a score for each matching element signified by the mask.

Template Parameters
TXTtype of the mask matrix. Must be a Ptxt or Ctxt.
Parameters
index_setsThe set of indicies signifying which columns of the mask to query.
offsetsThe constant term to be added to the final score of each queried column.
weightsThe weighted importance assigned to each queried column.
maskThe mask with which to calculate the score from.
Returns
A single Ctxt or Ptxt containing the total score for each queried column.

◆ calculateSetIntersection()

template<typename TXT >
TXT helib::calculateSetIntersection ( const TXT &  query,
const std::vector< NTL::ZZX > &  server_set 
)
inline

Given two sets, calculates and returns the set intersection.

Template Parameters
TXTtype of the query set. Must be a Ptxt or Ctxt.
Parameters
queryThe query set of type TXT where the elements of the set are held in the slots.
server_setThe server set. A vector of integer polynomials.
Returns
A set of the same size as query holding the elements in the intersecting set.

◆ card()

long helib::card ( const IndexSet s)

Functional cardinality.

◆ CheckCtxt()

void helib::CheckCtxt ( const Ctxt c,
const char *  label 
)

print to cerr some info about ciphertext

◆ checkNoise()

void helib::checkNoise ( const Ctxt ctxt,
const SecKey sk,
const std::string &  msg,
double  thresh = 10.0 
)

◆ CKKS_canonicalEmbedding() [1/3]

void helib::CKKS_canonicalEmbedding ( std::vector< cx_double > &  v,
const NTL::ZZX &  f,
const PAlgebra palg 
)

◆ CKKS_canonicalEmbedding() [2/3]

void helib::CKKS_canonicalEmbedding ( std::vector< cx_double > &  v,
const std::vector< double > &  f,
const PAlgebra palg 
)

◆ CKKS_canonicalEmbedding() [3/3]

void helib::CKKS_canonicalEmbedding ( std::vector< cx_double > &  v,
const zzX f,
const PAlgebra palg 
)

Computes canonical embedding. Requires p==-1 and m==2^k where k >=2 and f.length() < m/2. Sets v[m/4-1-i] = DFT[palg.ith_rep(i)] for i in range(m/4), where DFT[j] = f(W^j) for j in range(m), and W = exp(-2*pi*I/m).

◆ CKKS_embedInSlots()

void helib::CKKS_embedInSlots ( zzX f,
const std::vector< cx_double > &  v,
const PAlgebra palg,
double  scaling 
)

Requires p==-1 and m==2^k where k >=2. Computes the inverse of canonical embedding, scaled by scaling and then rounded to nearest integer.

◆ cleanupDebugGlobals()

void helib::cleanupDebugGlobals ( )
inline

Cleanup function for clearing the global debug variables.

◆ clear()

void helib::clear ( zzX a)
inline

◆ closeToOne()

bool helib::closeToOne ( const NTL::xdouble &  x,
long  p 
)
inline

◆ coeffsL2Norm() [1/3]

NTL::xdouble helib::coeffsL2Norm ( const DoubleCRT f)
inline

◆ coeffsL2Norm() [2/3]

NTL::xdouble helib::coeffsL2Norm ( const NTL::ZZX &  f)
inline

◆ coeffsL2Norm() [3/3]

double helib::coeffsL2Norm ( const zzX f)
inline

◆ coeffsL2NormSquared() [1/3]

NTL::xdouble helib::coeffsL2NormSquared ( const DoubleCRT f)

◆ coeffsL2NormSquared() [2/3]

NTL::xdouble helib::coeffsL2NormSquared ( const NTL::ZZX &  f)

◆ coeffsL2NormSquared() [3/3]

double helib::coeffsL2NormSquared ( const zzX f)

The L2-norm of an element (in coefficient representation)

◆ comparePAlgebra() [1/2]

bool helib::comparePAlgebra ( const PAlgebra palg,
unsigned long  m,
unsigned long  p,
unsigned long  r,
const std::vector< long > &  gens,
const std::vector< long > &  ords 
)

returns true if the palg parameters match the rest, false otherwise

◆ comparePAlgebra() [2/2]

bool helib::comparePAlgebra ( const PAlgebra palg,
unsigned long  m,
unsigned long  p,
UNUSED unsigned long  r,
const std::vector< long > &  gens,
const std::vector< long > &  ords 
)

◆ compareTwoNumbers() [1/2]

void helib::compareTwoNumbers ( CtPtrs max,
CtPtrs min,
Ctxt mu,
Ctxt ni,
const CtPtrs a,
const CtPtrs b,
bool  twosComplement = false,
std::vector< zzX > *  unpackSlotEncoding = nullptr 
)

Compares two integers in binary a, b. Returns max(a, b), min(a, b) and indicator bits mu=(a>b) and ni=(a<b)

Parameters
maxMaximum of a and b.
minMinimum of a and b.
muIndicator bits mu=(a>b).
niIndicator bits ni=(a<b).
aFirst number to compare.
bSecond number to compare.
twosComplementWhen set to true, the inputs are signed integers in 2's complement. If set to false (default), unsigned comparison is performed.
unpackSlotEncodingVector of constants for unpacking, as used in bootstrapping.
Note
If a=b then mu=ni=0

◆ compareTwoNumbers() [2/2]

void helib::compareTwoNumbers ( Ctxt mu,
Ctxt ni,
const CtPtrs a,
const CtPtrs b,
bool  twosComplement = false,
std::vector< zzX > *  unpackSlotEncoding = nullptr 
)

Compares two integers in binary a, b. Returns only indicator bits mu=(a>b) and ni=(a<b).

Parameters
muIndicator bits mu=(a>b).
niIndicator bits ni=(a<b).
aFirst number to compare.
bSecond number to compare.
twosComplementWhen set to true, the inputs are signed integers in 2's complement. If set to false (default), unsigned comparison is performed.
unpackSlotEncodingVector of constants for unpacking, as used in bootstrapping.
Note
If a=b then mu=ni=0

◆ compareTwoNumbersImplementation()

void helib::compareTwoNumbersImplementation ( CtPtrs max,
CtPtrs min,
Ctxt mu,
Ctxt ni,
const CtPtrs aa,
const CtPtrs bb,
bool  twosComplement,
std::vector< zzX > *  unpackSlotEncoding,
bool  cmp_only 
)

◆ computeAllProducts()

void helib::computeAllProducts ( CtPtrs products,
const CtPtrs array,
std::vector< zzX > *  unpackSlotEncoding = nullptr 
)

For an n-size array, compute the 2^n products products[j] = \prod_{i s.t. j_i=1} array[i] \times \prod_{i s.t. j_i=0}(a-array[i])

◆ computeDivVec()

void helib::computeDivVec ( NTL::Vec< long > &  divVec,
long  m,
const NTL::Vec< long > &  powVec 
)
inline

◆ computeIntervalForMul()

void helib::computeIntervalForMul ( double &  lo,
double &  hi,
const Ctxt ctxt1,
const Ctxt ctxt2 
)

◆ computeIntervalForSqr()

void helib::computeIntervalForSqr ( double &  lo,
double &  hi,
const Ctxt ctxt 
)

◆ computeInvVec()

void helib::computeInvVec ( NTL::Vec< long > &  invVec,
const NTL::Vec< long > &  divVec,
const NTL::Vec< long > &  powVec 
)
inline

◆ ComputeOneGenMapping()

void helib::ComputeOneGenMapping ( Permut genMap,
const OneGeneratorTree T 
)

to a single generator tree

◆ computeProd() [1/2]

long helib::computeProd ( const NTL::Vec< long > &  vec)

returns \prod_d vec[d]

◆ computeProd() [2/2]

long helib::computeProd ( const std::vector< long > &  vec)

◆ concatBinaryNums()

void helib::concatBinaryNums ( CtPtrs output,
const CtPtrs a,
const CtPtrs b 
)

Concatenates two binary numbers into a single CtPtrs object. E.g. If a=10111, b=00101 then output = 1011100101.

Concatenate two binary numbers into a single CtPtrs object.

Parameters
outputEqual to the concatenation of a and b.
aFirst number to copy into output.
bSecond number to concatenate to a.
Note
The size of output must be of size a.size() + b.size().

◆ conv() [1/2]

void helib::conv ( DoubleCRT d,
const NTL::ZZX &  p 
)
inline

◆ conv() [2/2]

void helib::conv ( NTL::ZZX &  p,
const DoubleCRT d 
)
inline

◆ convert() [1/18]

template<typename T1 , typename T2 >
T1 helib::convert ( const T2 &  v2)

◆ convert() [2/18]

void helib::convert ( long &  x1,
const NTL::GF2X &  x2 
)
inline

◆ convert() [3/18]

void helib::convert ( long &  x1,
const NTL::zz_pX &  x2 
)
inline

◆ convert() [4/18]

void helib::convert ( NTL::GF2X &  out,
const NTL::Vec< long > &  in 
)

◆ convert() [5/18]

void helib::convert ( NTL::mat_zz_pE &  X,
const std::vector< std::vector< NTL::ZZX >> &  A 
)

◆ convert() [6/18]

void helib::convert ( NTL::Vec< long > &  out,
const NTL::GF2X &  in 
)

◆ convert() [7/18]

void helib::convert ( NTL::Vec< long > &  out,
const NTL::zz_pX &  in,
bool  symmetric = true 
)

◆ convert() [8/18]

void helib::convert ( NTL::Vec< long > &  out,
const NTL::ZZX &  in 
)

◆ convert() [9/18]

template<typename T1 , typename T2 >
void helib::convert ( NTL::Vec< T1 > &  v1,
const std::vector< T2 > &  v2 
)

◆ convert() [10/18]

void helib::convert ( NTL::vec_zz_pE &  X,
const std::vector< NTL::ZZX > &  A 
)

◆ convert() [11/18]

void helib::convert ( NTL::zz_pX &  x,
const zzX a 
)
inline

◆ convert() [12/18]

void helib::convert ( NTL::ZZX &  out,
const NTL::Vec< long > &  in 
)

◆ convert() [13/18]

void helib::convert ( std::vector< NTL::ZZX > &  X,
const NTL::vec_zz_pE &  A 
)

◆ convert() [14/18]

void helib::convert ( std::vector< std::vector< NTL::ZZX >> &  X,
const NTL::mat_zz_pE &  A 
)

◆ convert() [15/18]

template<typename T >
void helib::convert ( std::vector< T > &  v1,
const std::vector< T > &  v2 
)

Trivial type conversion, useful for generic code.

◆ convert() [16/18]

template<typename T1 , typename T2 >
void helib::convert ( std::vector< T1 > &  v1,
const NTL::Vec< T2 > &  v2 
)

◆ convert() [17/18]

template<typename T1 , typename T2 >
void helib::convert ( std::vector< T1 > &  v1,
const std::vector< T2 > &  v2 
)

generic vector conversion routines

◆ convert() [18/18]

template<typename T1 , typename T2 >
void helib::convert ( T1 &  x1,
const T2 &  x2 
)

A generic template that resolves to NTL's conv routine.

◆ convertDataToSlotVector()

template<typename From , typename Scheme >
std::vector<typename Scheme::SlotType> helib::convertDataToSlotVector ( const std::vector< From > &  data,
const Context context 
)
inline

Converts std::vector<From> to std::vector<Scheme::SlotType>.

Template Parameters
FromType of the element in the input vector.
SchemeThe encryption scheme to be used, must be BGV or CKKS.
Parameters
dataVector to be converted.
Returns
Vector of converted values of type Scheme::SlotType.
Note
Only exists for BGV and CKKS.

◆ CRTcoeff()

long helib::CRTcoeff ( long  p,
long  q,
bool  symmetric = false 
)
inline

Returns a CRT coefficient: x = (0 mod p, 1 mod q). If symmetric is set then x \in [-pq/2, pq/2), else x \in [0,pq)

◆ Cyclotomic()

NTL::ZZX helib::Cyclotomic ( long  N)

Compute cyclotomic polynomial.

◆ decode() [1/2]

void helib::decode ( const EncryptedArray ea,
std::vector< long > &  array,
const PlaintextArray pa 
)

◆ decode() [2/2]

void helib::decode ( const EncryptedArray ea,
std::vector< NTL::ZZX > &  array,
const PlaintextArray pa 
)

◆ decryptAndCompare()

bool helib::decryptAndCompare ( const Ctxt ctxt,
const SecKey sk,
const EncryptedArray ea,
const PlaintextArray pa 
)

◆ decryptAndPrint()

void helib::decryptAndPrint ( std::ostream &  s,
const Ctxt ctxt,
const SecKey sk,
const EncryptedArray ea,
long  flags = 0 
)

◆ decryptBinaryNums()

void helib::decryptBinaryNums ( std::vector< long > &  pNums,
const CtPtrs eNums,
const SecKey sKey,
const EncryptedArray ea,
bool  twosComplement = false,
bool  allSlots = true 
)

Decrypt the binary numbers that are encrypted in eNums.

Parameters
pNumsvector to decrypt the binary numbers into.
eNumsencrypted binary numbers of which to be decrypted.
sKeysecret key used for decryption.
eaencrypted array that holds necessary information for decryption.
twosComplementwhen set to true, the number to decrypt is a signed integer in 2's complement.
allSlotswhen set to false, return only the sub-cube with index=0 in the last dimension within each ciphertext.

The bits are encrypted in a bit-sliced manner. Namely, encNums[0] contains the LSB of all the numbers, encNums[1] the next bits from all, etc. If twosComplement==true then the number is interpreted as a signed integer in 2's-complement representation. If allSlots==false then we only return the subcube with index i=0 in the last dimension within each ciphertext. Namely, the bit for the j'th counter is found in slot of index j*sizeOf(lastDim).

◆ defaultPmiddle()

long helib::defaultPmiddle ( long  delta)
inline

◆ defaultQmiddle()

long helib::defaultQmiddle ( long  delta)
inline

◆ deserialize() [1/3]

void helib::deserialize ( std::istream &  is,
PolyMod poly 
)
Parameters
isInput std::istream.
polyDestination PolyMod object.
Exceptions
IOErrorif the stream is badly formatted (i.e. it is not delimited by '[' and ']').
Note
poly must be constructed with an appropriate p2r and G BEFORE calling this function. For example,
PolyMod my_poly(p2r, G);
deserialize(std::cin, my_poly);

The input stream has to be formatted as a comma-separated list surrounded by '[' and ']'.
Each element of the list will be deserialized as a coefficient of the polynomial.
For example '['coef0', 'coef1', 'coef2']' will be deserialized as a PolyMod object poly where poly[0]=coef0, poly[1]=coef1, poly[2]=coef2 and poly[i]=0 for i>2.

◆ deserialize() [2/3]

template<typename Scheme >
void helib::deserialize ( std::istream &  is,
Ptxt< Scheme > &  ptxt 
)

Function to deserialize a Ptxt<Scheme>.

Template Parameters
SchemeThe Ptxt object scheme. Can be only be BGV or CKKS.
Parameters
isInput std::istream.
ptxtDestination Ptxt object.
Exceptions
IOErrorif the stream is badly formatted (i.e. it is not delimited by '[' and ']').
Note
ptxt must be constructed with an appropriate context BEFORE calling this function. For example,
Ptxt my_ptxt(context);
deserialize(std::cin, my_ptxt);

The input stream has to be formatted as a comma-separated list surrounded by '[' and ']'.
Each element of the list will be deserialized as a slot of the type determined by the scheme.
If the number of tokens in the list is less than the number of slots, the remaining slots will be padded by 0.
For example '['slot0', 'slot1', 'slot2']' will be deserialized as a plaintext ptxt where ptxt[0]=slot0, ptxt[1]=slot1, ptxt[2]=slot2 and ptxt[i]=0 for i>2.

◆ deserialize() [3/3]

void helib::deserialize ( std::istream &  is,
std::complex< double > &  num 
)

Deserialize a std::complex<double> from the input stream is delimited by '[' and ']' (instead of the default '(', ')').

Parameters
isThe input stream reference.
numThe complex number to deserialize.
Exceptions
IOErrorif the stream contains more than 2 parts.

The input stream has to be formatted as '['number']' (this will be deserialized as (number, 0)) or '['real_part', 'imag_part']' (this will be deserialized as (real_part, imag_part)).

◆ deserialize< BGV >()

template void helib::deserialize< BGV > ( std::istream &  is,
Ptxt< BGV > &  ptxt 
)

◆ deserialize< CKKS >()

template void helib::deserialize< CKKS > ( std::istream &  is,
Ptxt< CKKS > &  ptxt 
)

◆ DestMulAdd()

void helib::DestMulAdd ( Ctxt x,
const std::shared_ptr< ConstMultiplier > &  a,
Ctxt b 
)

◆ disjoint()

bool helib::disjoint ( const IndexSet s1,
const IndexSet s2 
)
inline

Functional disjoint.

◆ div() [1/2]

void helib::div ( std::vector< NTL::ZZX > &  x,
const std::vector< NTL::ZZX > &  a,
long  b 
)

◆ div() [2/2]

void helib::div ( zzX res,
const zzX a,
long  b 
)

◆ divc()

long helib::divc ( long  a,
long  b 
)
inline

returns ceiling(a/b); assumes a >=0, b>0, a+b <= MAX_LONG

◆ DoubleCRT::Op< DoubleCRT::AddFun >() [1/3]

template DoubleCRT& helib::DoubleCRT::Op< DoubleCRT::AddFun > ( const DoubleCRT other,
AddFun  fun,
bool  matchIndexSets 
)

◆ DoubleCRT::Op< DoubleCRT::AddFun >() [2/3]

template DoubleCRT& helib::DoubleCRT::Op< DoubleCRT::AddFun > ( const NTL::ZZ &  num,
AddFun  fun 
)

◆ DoubleCRT::Op< DoubleCRT::AddFun >() [3/3]

template DoubleCRT& helib::DoubleCRT::Op< DoubleCRT::AddFun > ( const NTL::ZZX &  poly,
AddFun  fun 
)

◆ DoubleCRT::Op< DoubleCRT::MulFun >() [1/2]

template DoubleCRT& helib::DoubleCRT::Op< DoubleCRT::MulFun > ( const NTL::ZZ &  num,
MulFun  fun 
)

◆ DoubleCRT::Op< DoubleCRT::MulFun >() [2/2]

template DoubleCRT& helib::DoubleCRT::Op< DoubleCRT::MulFun > ( const NTL::ZZX &  poly,
MulFun  fun 
)

◆ DoubleCRT::Op< DoubleCRT::SubFun >() [1/3]

template DoubleCRT& helib::DoubleCRT::Op< DoubleCRT::SubFun > ( const DoubleCRT other,
SubFun  fun,
bool  matchIndexSets 
)

◆ DoubleCRT::Op< DoubleCRT::SubFun >() [2/3]

template DoubleCRT& helib::DoubleCRT::Op< DoubleCRT::SubFun > ( const NTL::ZZ &  num,
SubFun  fun 
)

◆ DoubleCRT::Op< DoubleCRT::SubFun >() [3/3]

template DoubleCRT& helib::DoubleCRT::Op< DoubleCRT::SubFun > ( const NTL::ZZX &  poly,
SubFun  fun 
)

◆ EDF()

void helib::EDF ( NTL::vec_zz_pX &  v,
const NTL::zz_pX &  f,
long  d 
)

◆ embeddingLargestCoeff() [1/4]

NTL::xdouble helib::embeddingLargestCoeff ( const Ctxt ctxt,
const SecKey sk 
)

◆ embeddingLargestCoeff() [2/4]

NTL::xdouble helib::embeddingLargestCoeff ( const NTL::ZZX &  f,
const PAlgebra palg 
)

◆ embeddingLargestCoeff() [3/4]

double helib::embeddingLargestCoeff ( const std::vector< double > &  f,
const PAlgebra palg 
)

◆ embeddingLargestCoeff() [4/4]

double helib::embeddingLargestCoeff ( const zzX f,
const PAlgebra palg 
)

Computing the L-infinity norm of the canonical embedding Assumed: deg(f) < phi(m).

◆ embeddingLargestCoeff_x2()

void helib::embeddingLargestCoeff_x2 ( double &  norm1,
double &  norm2,
const std::vector< double > &  f1,
const std::vector< double > &  f2,
const PAlgebra palg 
)

◆ empty()

bool helib::empty ( const IndexSet s)
inline

◆ encode() [1/4]

void helib::encode ( const EncryptedArray ea,
PlaintextArray pa,
const NTL::ZZX &  val 
)

◆ encode() [2/4]

void helib::encode ( const EncryptedArray ea,
PlaintextArray pa,
const std::vector< long > &  array 
)

◆ encode() [3/4]

void helib::encode ( const EncryptedArray ea,
PlaintextArray pa,
const std::vector< NTL::ZZX > &  array 
)

◆ encode() [4/4]

void helib::encode ( const EncryptedArray ea,
PlaintextArray pa,
long  val 
)

◆ endBuildModChain()

void helib::endBuildModChain ( Context context)

◆ equals() [1/3]

bool helib::equals ( const EncryptedArray ea,
const PlaintextArray pa,
const PlaintextArray other 
)

◆ equals() [2/3]

bool helib::equals ( const EncryptedArray ea,
const PlaintextArray pa,
const std::vector< long > &  other 
)

◆ equals() [3/3]

bool helib::equals ( const EncryptedArray ea,
const PlaintextArray pa,
const std::vector< NTL::ZZX > &  other 
)

◆ extendExtractDigits()

void helib::extendExtractDigits ( std::vector< Ctxt > &  digits,
const Ctxt c,
long  r,
long  e 
)

◆ extractDigits() [1/2]

void helib::extractDigits ( std::vector< Ctxt > &  digits,
const Ctxt c,
long  r,
bool  shortCut 
)
inline

◆ extractDigits() [2/2]

void helib::extractDigits ( std::vector< Ctxt > &  digits,
const Ctxt c,
long  r = 0 
)

Extract the mod-p digits of a mod-p^r ciphertext.

extractDigits returns in the slots of digits[j] the j'th-lowest digits from the integers in the slots of the input. Namely, the i'th slot of digits[j] contains the j'th digit in the p-base expansion of the integer in the i'th slot of the *this.

If r==0 then it is set to c.effectiveR(). It is assumed that the slots of *this contains integers mod p^r, i.e., that only the free terms are nonzero. If that assumptions does not hold then the result will not be a valid ciphertext anymore.

The "shortcut" flag is deprecated, it often leads to catastrophic failure in the noise estimate. Calling the function with shortcut=true has not effect, except printing a warning message to cerr.

The output ciphertext digits[j] contains the j'th digit in the base-p expansion of the input, and its plaintext space is modulo p^{r-j}. All the ciphertexts in the output are at the same level.

◆ extractDigitsPacked()

void helib::extractDigitsPacked ( Ctxt ctxt,
long  botHigh,
long  r,
long  ePrime,
const std::vector< NTL::ZZX > &  unpackSlotEncoding 
)

◆ extractDigitsThin()

void helib::extractDigitsThin ( Ctxt ctxt,
long  botHigh,
long  r,
long  ePrime 
)

◆ extractTokenizeRegion()

std::vector< std::stringstream > helib::extractTokenizeRegion ( std::istream &  istr,
char  begin_char,
char  end_char,
char  separator,
bool  skip_space = true 
)

Advance the input stream istr beyond white spaces. Then split the region delimited by begin_char and end_char at each occurrence of separator that is not contained in an inner begin_char - end_char section. The function returns a std::vector<std::stringstream> with the stream of every section of the input region.

Parameters
istrThe stream to be advanced.
begin_charThe character determining the beginning of the region-of-interest.
end_charThe character determining the end of the region-of-interest
separatorThe separator character to split at.
skip_spaceBoolean value determining whether to skip spaces when extracting the sub-streams (default = true).
Returns
A std::vector<std::stringstream> with the stream of every section of the input region.
Exceptions
IOErrorIf the stream is badly formatted (i.e. it does not start with begin_char or it does not end with end_char).
Note
Requires begin_char, end_char and separator to be distinct and different from (space).

◆ factorize() [1/3]

void helib::factorize ( NTL::Vec< NTL::Pair< long, long >> &  factors,
long  N 
)

Factoring by trial division, only works for N<2^{60} primes and multiplicities are recorded.

◆ factorize() [2/3]

void helib::factorize ( std::vector< long > &  factors,
long  N 
)

Factoring by trial division, only works for N<2^{60}, only the primes are recorded, not their multiplicity.

◆ factorize() [3/3]

void helib::factorize ( std::vector< NTL::ZZ > &  factors,
const NTL::ZZ &  N 
)

◆ fastPower()

void helib::fastPower ( Ctxt ctxt,
long  d 
)

◆ fetch_saved_values()

const std::vector< double > * helib::fetch_saved_values ( const char *  name)

◆ fifteenOrLess4Four()

long helib::fifteenOrLess4Four ( const CtPtrs out,
const CtPtrs in,
long  sizeLimit = 4 
)

Add together up to fifteen {0,1} integers, producing a 4-bit counter.

Parameters
out4-bit counter to be outputted.
inbits to be counted.
sizeLimitnumber of bits to compute on, taken from the least significant end.
Returns
number of output bits that are not identically zero (i.e. != null).

Adding fifteen input bits, getting a 4-bit counter. Some of the input pointers may be null, but output pointers must point to allocated Ctxt objects. If sizeLimit<4, only that many bits are computed (taken from the least significant end).

Note
This function is currently not thread safe.

◆ findGenerators()

long helib::findGenerators ( std::vector< long > &  gens,
std::vector< long > &  ords,
long  m,
long  p,
const std::vector< long > &  candidates = std::vector<long>() 
)

Returns in gens a generating set for Zm* /

, and in ords the order of these generators. Return value is the order of p in Zm*.

◆ FindM()

long helib::FindM ( long  k,
long  nBits,
long  c,
long  p,
long  d,
long  s,
long  chosen_m,
bool  verbose = false 
)

Returns smallest parameter m satisfying various constraints:

Parameters
ksecurity parameter
Lnumber of levels
cnumber of columns in key switching matrices
pcharacteristic of plaintext space
dembedding degree (d ==0 or d==1 => no constraint)
sat least that many plaintext slots
chosen_mpreselected value of m (0 => not preselected) Fails with an error message if no suitable m is found prints an informative message if verbose == true

◆ findMinBitCapacity() [1/3]

long helib::findMinBitCapacity ( const CtPtrMat m)
inline

◆ findMinBitCapacity() [2/3]

long helib::findMinBitCapacity ( const CtPtrs v)
inline

◆ findMinBitCapacity() [3/3]

long helib::findMinBitCapacity ( std::initializer_list< const CtPtrs * >  list)
inline

◆ FindPrimitiveRoot() [1/2]

void helib::FindPrimitiveRoot ( NTL::zz_p &  r,
unsigned long  e 
)

Find e-th root of unity modulo the current modulus.

◆ FindPrimitiveRoot() [2/2]

void helib::FindPrimitiveRoot ( NTL::ZZ_p &  r,
unsigned long  e 
)

◆ FindPrimRootT()

template<typename zp , typename zz >
void helib::FindPrimRootT ( zp &  root,
unsigned long  e 
)

◆ frobeniusAutomorph() [1/2]

void helib::frobeniusAutomorph ( const EncryptedArray ea,
PlaintextArray pa,
const NTL::Vec< long > &  vec 
)

◆ frobeniusAutomorph() [2/2]

void helib::frobeniusAutomorph ( const EncryptedArray ea,
PlaintextArray pa,
long  j 
)

◆ FrobeniusMap()

NTL::zz_pEX helib::FrobeniusMap ( const NTL::zz_pEXModulus &  F)

◆ fsquare()

double helib::fsquare ( double  x)
inline

Return the square of a number as a double.

◆ GenBabySteps()

void helib::GenBabySteps ( std::vector< std::shared_ptr< Ctxt >> &  v,
const Ctxt ctxt,
long  dim,
bool  clean 
)

◆ getG()

NTL::ZZX helib::getG ( const EncryptedArray ea)

◆ getHyperColumn() [1/3]

template void helib::getHyperColumn ( NTL::Vec< long > &  v,
const ConstCubeSlice< long > &  s,
long  pos 
)

◆ getHyperColumn() [2/3]

template void helib::getHyperColumn ( NTL::Vec< NTL::zz_p > &  v,
const ConstCubeSlice< NTL::zz_p > &  s,
long  pos 
)

◆ getHyperColumn() [3/3]

template<typename T >
void helib::getHyperColumn ( NTL::Vec< T > &  v,
const ConstCubeSlice< T > &  s,
long  pos 
)

getHyperColumn reads out a (multi-dimensional) column from a slice. The parameter pos specifies the position of the column, which must be in the range 0 <= pos < s.getProd(1). The vector v is filled with values whose coordinate in the lower dimensional subcube is equal to pos. The length of v will be set to s.getDim(0).

◆ getPhimXMod()

const NTL::zz_pXModulus & helib::getPhimXMod ( const PAlgebra palg)

◆ getTimerByName()

const FHEtimer * helib::getTimerByName ( const char *  name)

◆ GetTimerClock()

unsigned long helib::GetTimerClock ( )

◆ incrementalProduct()

void helib::incrementalProduct ( std::vector< Ctxt > &  v)

For i=n-1...0, set v[i]=prod_{j<=i} v[j] This implementation uses depth log n and (nlog n)/2 products

◆ incrementalZeroTest()

void helib::incrementalZeroTest ( Ctxt res[],
const EncryptedArray ea,
const Ctxt ctxt,
long  n 
)

◆ innerProduct() [1/9]

Ctxt helib::innerProduct ( const CtPtrs v1,
const CtPtrs v2 
)
inline

◆ innerProduct() [2/9]

Ctxt helib::innerProduct ( const std::vector< Ctxt > &  v1,
const std::vector< Ctxt > &  v2 
)
inline

◆ innerProduct() [3/9]

Ctxt helib::innerProduct ( const std::vector< Ctxt > &  v1,
const std::vector< DoubleCRT > &  v2 
)
inline

◆ innerProduct() [4/9]

Ctxt helib::innerProduct ( const std::vector< Ctxt > &  v1,
const std::vector< NTL::ZZX > &  v2 
)
inline

◆ innerProduct() [5/9]

void helib::innerProduct ( Ctxt result,
const CtPtrs v1,
const CtPtrs v2 
)

◆ innerProduct() [6/9]

void helib::innerProduct ( Ctxt result,
const std::vector< Ctxt > &  v1,
const std::vector< Ctxt > &  v2 
)

◆ innerProduct() [7/9]

void helib::innerProduct ( Ctxt result,
const std::vector< Ctxt > &  v1,
const std::vector< DoubleCRT > &  v2 
)

Compute the inner product of a vectors of ciphertexts and a constant vector.

◆ innerProduct() [8/9]

void helib::innerProduct ( Ctxt result,
const std::vector< Ctxt > &  v1,
const std::vector< NTL::ZZX > &  v2 
)

◆ innerProduct() [9/9]

template<typename Scheme >
void helib::innerProduct ( Ptxt< Scheme > &  result,
const std::vector< Ptxt< Scheme >> &  first_vec,
const std::vector< Ptxt< Scheme >> &  second_vec 
)

Free function that computes the inner product of two vectors of Ptxt.

Parameters
resultThe output Ptxt that will hold the result.
first_vecThe first input vector of plaintexts.
second_vecThe second input vector of plaintexts.
Note
If the two vector sizes differ, the shorter vector will be padded with zeroes.

◆ interpolateMod()

void helib::interpolateMod ( NTL::ZZX &  poly,
const NTL::vec_long &  x,
const NTL::vec_long &  y,
long  p,
long  e = 1 
)

Interpolate polynomial such that poly(x[i] mod p)=y[i] (mod p^e) It is assumed that the points x[i] are all distinct modulo p.

◆ intVecCRT() [1/4]

template bool helib::intVecCRT ( NTL::vec_ZZ &  ,
const NTL::ZZ &  ,
const NTL::Vec< NTL::zz_p > &  ,
long   
)

◆ intVecCRT() [2/4]

template bool helib::intVecCRT ( NTL::vec_ZZ &  ,
const NTL::ZZ &  ,
const NTL::vec_long &  ,
long   
)

◆ intVecCRT() [3/4]

template bool helib::intVecCRT ( NTL::vec_ZZ &  ,
const NTL::ZZ &  ,
const NTL::vec_ZZ &  ,
long   
)

◆ intVecCRT() [4/4]

template<class zzvec >
bool helib::intVecCRT ( NTL::vec_ZZ &  vp,
const NTL::ZZ &  p,
const zzvec &  vq,
long  q 
)

Incremental integer CRT for vectors.

Expects co-primes p,q with q odd, and such that all the entries in v1 are in [-p/2,p/2). Returns in v1 the CRT of vp mod p and vq mod q, as integers in [-pq/2, pq/2). Uses the formula:

\[ CRT(vp,p,vq,q) = vp + [(vq-vp) * p^{-1}]_q * p, \]

where [...]_q means reduction to the interval [-q/2,q/2). Notice that if q is odd then this is the same as reducing to [-(q-1)/2,(q-1)/2], which means that [...]_q * p is in [-p(q-1)/2, p(q-1)/2], and since vp is in [-p/2,p/2) then the sum is indeed in [-pq/2,pq/2).

Return true is both vectors are of the same length, false otherwise

◆ InvModpr()

void helib::InvModpr ( NTL::zz_pX &  S,
const NTL::zz_pX &  F,
const NTL::zz_pX &  G,
long  p,
long  r 
)

◆ is2power()

bool helib::is2power ( long  m)
inline

◆ is_in()

long helib::is_in ( long  x,
int *  X,
long  sz 
)

Finds whether x is an element of the set X of size sz, Returns -1 it not and the location if true.

◆ isDryRun()

bool helib::isDryRun ( )
inline

◆ isSetAutomorphVals()

bool helib::isSetAutomorphVals ( )
inline

◆ isSetAutomorphVals2()

bool helib::isSetAutomorphVals2 ( )
inline

◆ IsZero()

bool helib::IsZero ( const zzX a)
inline

◆ iterateInterestRegion()

bool helib::iterateInterestRegion ( std::istream &  str,
int  begin_char,
int  separator,
int  end_char 
)

Advance the input stream str beyond white spaces and a single separator in the region-of-interest delimited by begin_char and end_char.

Parameters
strThe stream to be advanced.
begin_charThe character determining the beginning of the region-of-interest (to advance beyond of).
separatorThe separator character to advance beyond of.
end_charThe character determining the end of the region-of-interest (to advance beyond of).
Returns
true if the region-of-interest is not completed (i.e.: end_char is not reached). false otherwise.
Note
Throws helib::RuntimeError if after spaces there is a character different from begin_char, beyond, or end_char.

◆ killVec() [1/2]

template<typename T >
void helib::killVec ( NTL::Vec< T > &  vec)

◆ killVec() [2/2]

template<typename T >
void helib::killVec ( std::vector< T > &  vec)

NTL/std compatibility.

◆ KSGiantStepSize()

long helib::KSGiantStepSize ( long  D)

Function that returns number of baby steps. Used to keep this and matmul routines "in sync".

◆ largestCoeff() [1/5]

NTL::ZZ helib::largestCoeff ( const DoubleCRT f)

◆ largestCoeff() [2/5]

NTL::ZZ helib::largestCoeff ( const NTL::Vec< NTL::ZZ > &  f)

◆ largestCoeff() [3/5]

template<typename T >
double helib::largestCoeff ( const NTL::Vec< T > &  f)

The L-infinity norm of an element (in coefficient representation)

◆ largestCoeff() [4/5]

NTL::ZZ helib::largestCoeff ( const NTL::ZZX &  f)

◆ largestCoeff() [5/5]

template<typename T >
double helib::largestCoeff ( const std::vector< T > &  f)

◆ leftBitwiseShift()

void helib::leftBitwiseShift ( CtPtrs output,
const CtPtrs input,
const long  shamt 
)

Left shift input by shamt.

Shift binary numbers to the left by shamt

Parameters
outputShifted result.
inputThe number to be shifted.
shamtThe number to bits to shift by.
Note
This is a left shift only, i.e. the bits are moved to the most-significant end.
shamt must be positive.
The size of output and input must be the same.

◆ length()

long helib::length ( GenNodePtr  ptr)

◆ less_than() [1/8]

bool helib::less_than ( const NTL::GF2E &  a,
const NTL::GF2E &  b 
)

◆ less_than() [2/8]

bool helib::less_than ( const NTL::GF2EX &  a,
const NTL::GF2EX &  b 
)

◆ less_than() [3/8]

bool helib::less_than ( const NTL::GF2X &  a,
const NTL::GF2X &  b 
)

◆ less_than() [4/8]

bool helib::less_than ( const NTL::zz_pE &  a,
const NTL::zz_pE &  b 
)

◆ less_than() [5/8]

bool helib::less_than ( const NTL::zz_pEX &  a,
const NTL::zz_pEX &  b 
)

◆ less_than() [6/8]

bool helib::less_than ( const NTL::zz_pX &  a,
const NTL::zz_pX &  b 
)

◆ less_than() [7/8]

bool helib::less_than ( NTL::GF2  a,
NTL::GF2  b 
)

◆ less_than() [8/8]

bool helib::less_than ( NTL::zz_p  a,
NTL::zz_p  b 
)

◆ log2()

double helib::log2 ( const NTL::xdouble &  x)
inline

Base-2 logarithm.

◆ log2_realToEstimatedNoise()

double helib::log2_realToEstimatedNoise ( const Ctxt ctxt,
const SecKey sk 
)

◆ longToBitVector()

std::vector< long > helib::longToBitVector ( long  num,
long  bitSize 
)

Returns a number as a vector of bits with LSB on the left.

Parameters
numNumber to be converted.
bitSizeNumber of bits of the input and output.
Returns
Bit vector representation of num.
Note
bitSize must be non-negative.

◆ lsize() [1/4]

template<typename T >
long helib::lsize ( const NTL::Vec< T > &  v)
inline

◆ lsize() [2/4]

template<typename T >
long helib::lsize ( const PtrMatrix< T > &  v)

◆ lsize() [3/4]

template<typename T >
long helib::lsize ( const PtrVector< T > &  v)

◆ lsize() [4/4]

template<typename T >
long helib::lsize ( const std::vector< T > &  v)
inline

Size of STL vector as a long (rather than unsigned long)

◆ lweEstimateSecurity()

double helib::lweEstimateSecurity ( int  n,
double  log2AlphaInv,
int  hwt 
)
inline

An estimate for the security-level. This has a lower bound of 0.

This function uses experimental affine approximations to the lwe-estimator from https://bitbucket.org/malb/lwe-estimator/raw/HEAD/estimator.py, from Aug-2020 (see script in misc/estimator/lwe-estimator.sage). Let X = n / log(1/alpha), the security level is estimated as follows:

  • dense {-1,0,1} keys: security ~ 3.8*X -20
  • sparse keys (weight=450): security ~ 3.55*X -12
  • sparse keys (weight=420): security ~ 3.5*X -10
  • sparse keys (weight=390): security ~ 3.45*X -7
  • sparse keys (weight=360): security ~ 3.4*X -5
  • sparse keys (weight=330): security ~ 3.35*X -4
  • sparse keys (weight=300): security ~ 3.3*X -3
  • sparse keys (weight=270): security ~ 3.2*X +1
  • sparse keys (weight=240): security ~ 3.1*X +3
  • sparse keys (weight=210): security ~ 3*X +6
  • sparse keys (weight=180): security ~ 2.83*X +10
  • sparse keys (weight=150): security ~ 2.67*X +13
  • sparse keys (weight=120): security ~ 2.4*X +19

◆ make_lazy()

template<typename T , typename P , typename... Args>
void helib::make_lazy ( const NTL::Lazy< T, P > &  obj,
Args &&...  args 
)

This should go in NTL some day... Just call as make_lazy(obj, ...) to initialize a lazy object via a call to a constructor T(...)

◆ make_lazy_with_fun()

template<typename T , typename P , typename F , typename... Args>
void helib::make_lazy_with_fun ( const NTL::Lazy< T, P > &  obj,
f,
Args &&...  args 
)

This should go in NTL some day... Just call as make_lazy(obj, f, ....) to initialize a lazy object via a call to f(*obj, ...)

◆ makeIrredPoly()

NTL::ZZX helib::makeIrredPoly ( long  p,
long  d 
)

Return a degree-d irreducible polynomial mod p.

◆ makeQueryExpr()

std::shared_ptr<ColNumber> helib::makeQueryExpr ( int  cl)
inline

Utility function for creating a shared pointer to a specified column in a query.

Parameters
clThe index of the column to be used in the query.
Returns
Shared pointer to the class ColNumber.

◆ mapTo01() [1/4]

template void helib::mapTo01 ( const EncryptedArray ,
Ptxt< BGV > &  ptxt 
)

◆ mapTo01() [2/4]

template void helib::mapTo01 ( const EncryptedArray ,
Ptxt< CKKS > &  ptxt 
)

◆ mapTo01() [3/4]

template<typename Scheme >
void helib::mapTo01 ( const EncryptedArray ,
Ptxt< Scheme > &  ptxt 
)

◆ mapTo01() [4/4]

void helib::mapTo01 ( const EncryptedArray ea,
Ctxt ctxt 
)

◆ max_abs() [1/2]

double helib::max_abs ( const std::vector< double > &  vec)
inline

◆ max_abs() [2/2]

double helib::max_abs ( const std::vector< std::complex< double >> &  vec)
inline

Simple routine for computing the max-abs of a vector of complex numbers and real numbers

◆ maximum_flow()

long helib::maximum_flow ( FlowGraph fg,
long  src,
long  sink 
)

Remove from the graph all the flow-zero edges for (long i=0; i<(long)fg.size(); i++) { FNeighborList::iterator it1=fg[i].begin(); do { FNeighborList::iterator it2 = it1; it1++; // increment the iterator before potentially erasing the edge if (it2->second.flow == 0) fg[i].erase(it2); } while (it1 != fg[i].end()); }

Remove from the graph all the flow-zero edges for (long i=0; i<(long)fg.size(); i++) { FNeighborList::iterator it1=fg[i].begin(); do { FNeighborList::iterator it2 = it1; it1++; // increment the iterator before potentially erasing the edge if (it2->second.flow == 0) fg[i].erase(it2); } while (it1 != fg[i].end()); }

◆ mcDiv()

long helib::mcDiv ( long  a,
long  b 
)

◆ mcMod()

long helib::mcMod ( long  a,
long  b 
)

Routines for computing mathematically correct mod and div.

mcDiv(a, b) = floor(a / b), mcMod(a, b) = a - b*mcDiv(a, b); in particular, mcMod(a, b) is 0 or has the same sign as b

◆ mobius()

long helib::mobius ( long  n)

Compute mobius function (naive method as n is small).

◆ ModComp()

void helib::ModComp ( NTL::ZZX &  res,
const NTL::ZZX &  g,
const NTL::ZZX &  h,
const NTL::ZZX &  f 
)

Modular composition of polynomials: res = g(h) mod f.

◆ mul() [1/7]

void helib::mul ( const EncryptedArray ea,
PlaintextArray pa,
const PlaintextArray other 
)

◆ mul() [2/7]

void helib::mul ( PlaintextArray pa,
const BlockMatMul1D mat 
)

◆ mul() [3/7]

void helib::mul ( PlaintextArray pa,
const BlockMatMulFull mat 
)

◆ mul() [4/7]

void helib::mul ( PlaintextArray pa,
const MatMul1D mat 
)

◆ mul() [5/7]

void helib::mul ( PlaintextArray pa,
const MatMulFull mat 
)

◆ mul() [6/7]

void helib::mul ( std::vector< NTL::ZZX > &  x,
const std::vector< NTL::ZZX > &  a,
long  b 
)

◆ mul() [7/7]

void helib::mul ( zzX res,
const zzX a,
long  b 
)

◆ MulAdd()

void helib::MulAdd ( Ctxt x,
const std::shared_ptr< ConstMultiplier > &  a,
const Ctxt b 
)

◆ MulMod() [1/6]

NTL::ZZX helib::MulMod ( const NTL::ZZX &  f,
long  a,
long  q 
)
inline

◆ MulMod() [2/6]

NTL::ZZX helib::MulMod ( const NTL::ZZX &  f,
long  a,
long  q,
bool  abs 
)
inline

◆ MulMod() [3/6]

zzX helib::MulMod ( const zzX a,
const zzX b,
const PAlgebra palg 
)
inline

◆ MulMod() [4/6]

void helib::MulMod ( NTL::ZZX &  out,
const NTL::ZZX &  f,
long  a,
long  q 
)
inline

◆ MulMod() [5/6]

void helib::MulMod ( NTL::ZZX &  out,
const NTL::ZZX &  f,
long  a,
long  q,
bool  abs 
)

◆ MulMod() [6/6]

void helib::MulMod ( zzX res,
const zzX a,
const zzX b,
const PAlgebra palg 
)

◆ multOrd()

long helib::multOrd ( long  p,
long  m 
)

Return multiplicative order of p modulo m, or 0 if GCD(p, m) != 1.

◆ multTwoNumbers()

void helib::multTwoNumbers ( CtPtrs product,
const CtPtrs lhs,
const CtPtrs rhs,
bool  rhsTwosComplement = false,
long  sizeLimit = 0,
std::vector< zzX > *  unpackSlotEncoding = nullptr 
)

Multiply two numbers in binary representation where each ciphertext of the input vector contains a bit.

Parameters
productresult of the multiplication operation.
lhsleft hand side of the multiplication.
rhsright hand side of the multiplication.
rhsTwosComplementflag to state the multiplier is potentially negative.
sizeLimitnumber of bits to compute on, taken from the least significant end.
unpackSlotEncodingvector of constants for unpacking, as used in bootstrapping.

◆ negate()

void helib::negate ( const EncryptedArray ea,
PlaintextArray pa 
)

◆ negateBinary()

void helib::negateBinary ( CtPtrs negation,
const CtPtrs input 
)

Negates a number in binary 2's complement representation.

Parameters
negationReference to the negated number that will be populated.
inputNumber to be negated.
Note
input will be treated as a number in 2's complement.
input must not alias negation.

◆ normalize()

void helib::normalize ( zzX f)

◆ operator!=()

template<typename T >
bool helib::operator!= ( const IndexMap< T > &  map1,
const IndexMap< T > &  map2 
)

◆ operator&()

IndexSet helib::operator& ( const IndexSet s,
const IndexSet t 
)

intersection

◆ operator&&()

std::shared_ptr<And> helib::operator&& ( const QueryExpr lhs,
const QueryExpr rhs 
)
inline

Overloaded operator for creating a shared pointer to an AND expression.

Parameters
lhsLeft operand of the AND expression.
rhsRight operand of the AND expression.
Returns
Shared pointer to the class And.

◆ operator*() [1/2]

template<typename T , typename T2 , typename std::enable_if_t< std::is_convertible< T, std::size_t >::value > * = nullptr>
Tensor< T, 2 > helib::operator* ( const Tensor< T, 2 > &  M1,
const Tensor< T2, 2 > &  M2 
)
inline

◆ operator*() [2/2]

zzX helib::operator* ( const zzX a,
long  b 
)
inline

◆ operator*=()

zzX& helib::operator*= ( zzX a,
long  b 
)
inline

◆ operator+()

zzX helib::operator+ ( const zzX a,
const zzX b 
)
inline

◆ operator+=()

zzX& helib::operator+= ( zzX a,
const zzX b 
)
inline

◆ operator/() [1/2]

IndexSet helib::operator/ ( const IndexSet s,
const IndexSet t 
)

set minus

◆ operator/() [2/2]

zzX helib::operator/ ( const zzX a,
long  b 
)
inline

◆ operator/=()

zzX& helib::operator/= ( zzX a,
long  b 
)
inline

◆ operator<()

bool helib::operator< ( const IndexSet s1,
const IndexSet s2 
)

Is s1 strict subset of s2.

◆ operator<<() [1/24]

template<typename Scheme >
std::ostream & helib::operator<< ( std::ostream &  is,
const Ptxt< Scheme > &  ptxt 
)

Output shift operator. Uses the serialize function internally.

Parameters
osOutput std::ostream.
ptxtPtxt object to be written.
Returns
Input std::ostream post writing.
Note
Ptxt context is not serialized, see note of operator>>.

The output stream will be formatted as a comma-separated list surrounded by '[' and ']'.
Each slot of ptxt will be serialized in an element of such list by the serialize function determined by the scheme.
For example if we have a plaintext ptxt such that ptxt[0]=slot0, ptxt[1]=slot1, ptxt[2]=slot2, and ptxt[i]=0 for i>2, it will be serialized as '['slot0', 'slot1', 'slot2', 0, 0 ...]'.

◆ operator<<() [2/24]

std::ostream& helib::operator<< ( std::ostream &  os,
const PolyMod poly 
)
Parameters
osOutput std::ostream.
polyPolyMod object to be written.
Returns
Input std::ostream post writing.
Note
p2r and G are not serialized, see note of operator>>.

The output stream will be formatted as a comma-separated list surrounded by '[' and ']'.
Each coefficient of poly will be serialized in an element of such list by the >> operator.
For example if we have a PolyMod object poly such that poly[0]=coef0, poly[1]=coef1, poly[2]=coef2, and poly[i]=0 for i>2, it will be serialized as '['coef0', 'coef1', 'coef2']'.

◆ operator<<() [3/24]

std::ostream& helib::operator<< ( std::ostream &  os,
const PolyModRing ring 
)
Parameters
osOutput std::ostream.
ringPolyModRing object to be written.
Returns
Input std::ostream post writing.

◆ operator<<() [4/24]

std::ostream & helib::operator<< ( std::ostream &  s,
const ColPerm p 
)

◆ operator<<() [5/24]

std::ostream & helib::operator<< ( std::ostream &  s,
const CtxtPart p 
)

◆ operator<<() [6/24]

std::ostream& helib::operator<< ( std::ostream &  s,
const CubeSignature sig 
)
inline

◆ operator<<() [7/24]

std::ostream& helib::operator<< ( std::ostream &  s,
const GeneratorTrees trees 
)

◆ operator<<() [8/24]

std::ostream& helib::operator<< ( std::ostream &  s,
const ModuliSizes szs 
)

◆ operator<<() [9/24]

std::ostream & helib::operator<< ( std::ostream &  s,
const ModuliSizes::Entry e 
)

◆ operator<<() [10/24]

std::ostream& helib::operator<< ( std::ostream &  s,
const PermNetwork net 
)

◆ operator<<() [11/24]

std::ostream& helib::operator<< ( std::ostream &  s,
const PlaintextArray pa 
)
inline

◆ operator<<() [12/24]

std::ostream& helib::operator<< ( std::ostream &  s,
const SKHandle handle 
)
inline

◆ operator<<() [13/24]

std::ostream& helib::operator<< ( std::ostream &  s,
const SubDimension sd 
)

◆ operator<<() [14/24]

std::ostream& helib::operator<< ( std::ostream &  s,
GenNodePtr  p 
)

◆ operator<<() [15/24]

std::ostream& helib::operator<< ( std::ostream &  s,
LongNodePtr  p 
)

◆ operator<<() [16/24]

std::ostream& helib::operator<< ( std::ostream &  s,
SplitNodePtr  p 
)

◆ operator<<() [17/24]

template<typename T >
std::ostream& helib::operator<< ( std::ostream &  s,
std::vector< T >  v 
)

◆ operator<<() [18/24]

std::ostream& helib::operator<< ( std::ostream &  str,
const Context context 
)

◆ operator<<() [19/24]

std::ostream& helib::operator<< ( std::ostream &  str,
const Ctxt ctxt 
)

◆ operator<<() [20/24]

std::ostream& helib::operator<< ( std::ostream &  str,
const DoubleCRT d 
)

◆ operator<<() [21/24]

std::ostream & helib::operator<< ( std::ostream &  str,
const IndexSet set 
)

◆ operator<<() [22/24]

std::ostream & helib::operator<< ( std::ostream &  str,
const KeySwitch matrix 
)

◆ operator<<() [23/24]

std::ostream& helib::operator<< ( std::ostream &  str,
const PubKey pk 
)

◆ operator<<() [24/24]

std::ostream& helib::operator<< ( std::ostream &  str,
const SecKey sk 
)

◆ operator<<<BGV >()

template std::ostream& helib::operator<<<BGV > ( std::ostream &  os,
const Ptxt< BGV > &  ptxt 
)

◆ operator<<<CKKS >()

template std::ostream& helib::operator<<<CKKS > ( std::ostream &  os,
const Ptxt< CKKS > &  ptxt 
)

◆ operator<=()

bool helib::operator<= ( const IndexSet s1,
const IndexSet s2 
)

Is s1 subset or equal to s2.

◆ operator==()

template<typename T >
bool helib::operator== ( const IndexMap< T > &  map1,
const IndexMap< T > &  map2 
)

Comparing maps, by comparing all the elements.

◆ operator>() [1/2]

bool helib::operator> ( const IndexSet s1,
const IndexSet s2 
)

Is s2 strict subset of s1.

◆ operator>() [2/2]

bool helib::operator> ( const ModuliSizes::Entry a,
const ModuliSizes::Entry b 
)
inline

◆ operator>=()

bool helib::operator>= ( const IndexSet s1,
const IndexSet s2 
)

Is s2 subset or equal to s2.

◆ operator>>() [1/13]

std::istream& helib::operator>> ( std::istream &  is,
PolyMod poly 
)
Parameters
isInput std::istream.
polyDestination PolyMod object.
Returns
Input std::istream post reading.
Note
poly must be constructed with an appropriate p2r and G BEFORE calling this function. For example,
PolyMod my_poly(p2r, G);
std::cin >> my_poly;

The input stream has to be formatted as a comma-separated list surrounded by '[' and ']'.
Each element of the list will be deserialized as a coefficient of the polynomial.
If the number of tokens in the list is less than the number of coefficients, the higher-degree coefficients will be padded by 0.
For example '['coef0', 'coef1', 'coef2']' will be deserialized as a PolyMod object poly where poly[0]=coef0, poly[1]=coef1, poly[2]=coef2 and poly[i]=0 for i>2.

◆ operator>>() [2/13]

template<typename Scheme >
std::istream & helib::operator>> ( std::istream &  is,
Ptxt< Scheme > &  ptxt 
)

Input shift operator. Uses the deserialize function internally.

Parameters
isInput std::istream.
ptxtDestination Ptxt object.
Returns
Input std::istream post reading.
Note
ptxt must be constructed with an appropriate context BEFORE calling this function. For example,
Ptxt my_ptxt(context);
std::cin >> my_ptxt;

The input stream has to be formatted as a comma-separated list surrounded by '[' and ']'.
Each element of the list will be deserialized as a slot of the type determined by the scheme.
If the number of tokens in the list is less than the number of slots, the remaining slots will be padded by 0.
For example '['slot0', 'slot1', 'slot2']' will be deserialized as a plaintext ptxt where ptxt[0]=slot0, ptxt[1]=slot1, ptxt[2]=slot2 and ptxt[i]=0 for i>2.

◆ operator>>() [3/13]

std::istream & helib::operator>> ( std::istream &  s,
CtxtPart p 
)

◆ operator>>() [4/13]

std::istream& helib::operator>> ( std::istream &  s,
ModuliSizes szs 
)

◆ operator>>() [5/13]

std::istream & helib::operator>> ( std::istream &  s,
ModuliSizes::Entry e 
)

◆ operator>>() [6/13]

template<typename T >
std::istream& helib::operator>> ( std::istream &  s,
std::vector< T > &  v 
)

◆ operator>>() [7/13]

std::istream& helib::operator>> ( std::istream &  str,
Context context 
)

◆ operator>>() [8/13]

std::istream& helib::operator>> ( std::istream &  str,
Ctxt ctxt 
)

◆ operator>>() [9/13]

std::istream& helib::operator>> ( std::istream &  str,
DoubleCRT d 
)

◆ operator>>() [10/13]

std::istream & helib::operator>> ( std::istream &  str,
IndexSet set 
)

◆ operator>>() [11/13]

std::istream& helib::operator>> ( std::istream &  str,
PubKey pk 
)

◆ operator>>() [12/13]

std::istream& helib::operator>> ( std::istream &  str,
SecKey sk 
)

◆ operator>>() [13/13]

std::istream& helib::operator>> ( std::istream &  str,
SKHandle handle 
)

◆ operator>><BGV >()

template std::istream& helib::operator>><BGV > ( std::istream &  is,
Ptxt< BGV > &  ptxt 
)

◆ operator>><CKKS >()

template std::istream& helib::operator>><CKKS > ( std::istream &  is,
Ptxt< CKKS > &  ptxt 
)

◆ operator^()

IndexSet helib::operator^ ( const IndexSet s,
const IndexSet t 
)

exclusive-or

◆ operator|()

IndexSet helib::operator| ( const IndexSet s,
const IndexSet t 
)

union

◆ operator||()

std::shared_ptr<Or> helib::operator|| ( const QueryExpr lhs,
const QueryExpr rhs 
)
inline

Overloaded operator for creating a shared pointer to an OR expression.

Parameters
lhsLeft operand of the OR expression.
rhsRight operand of the OR expression.
Returns
Shared pointer to the class Or.

◆ optimalBenes()

void helib::optimalBenes ( long  n,
long  budget,
bool  good,
long &  cost,
LongNodePtr &  solution 
)

◆ optimalBenesAux()

BenesMemoEntry helib::optimalBenesAux ( long  i,
long  budget,
long  nlev,
const NTL::Vec< NTL::Vec< long >> &  costTab,
BenesMemoTable &  memoTab 
)

◆ optimalLower()

LowerMemoEntry helib::optimalLower ( long  order,
bool  good,
long  budget,
long  mid,
LowerMemoTable &  lowerMemoTable 
)

◆ optimalUpperAux()

UpperMemoEntry helib::optimalUpperAux ( const NTL::Vec< GenDescriptor > &  vec,
long  i,
long  budget,
long  mid,
UpperMemoTable &  upperMemoTable,
LowerMemoTable &  lowerMemoTable 
)

◆ ord()

long helib::ord ( long  N,
long  p 
)

Compute the highest power of p that divides N.

◆ packConstant()

void helib::packConstant ( zzX result,
unsigned long  data,
long  nbits,
const EncryptedArray ea 
)

◆ packConstants()

void helib::packConstants ( zzX result,
const std::vector< std::size_t > &  data,
long  nbits,
const EncryptedArray ea 
)

◆ packedRecrypt() [1/4]

void helib::packedRecrypt ( const CtPtrMat m,
const std::vector< zzX > &  unpackConsts,
const EncryptedArray ea,
long  belowLvl = LONG_MAX 
)

◆ packedRecrypt() [2/4]

void helib::packedRecrypt ( const CtPtrs a,
const CtPtrs b,
std::vector< zzX > *  unpackSlotEncoding 
)

Function for packed recryption to recrypt multiple numbers.

Parameters
afirst input of which to recrypt.
bsecond input of which to recrypt.
unpackSlotEncodingvector of constants for unpacking, as used in bootstrapping.

◆ packedRecrypt() [3/4]

void helib::packedRecrypt ( const CtPtrs array,
const std::vector< zzX > &  unpackConsts,
const EncryptedArray ea,
long  belowLvl 
)

◆ packedRecrypt() [4/4]

void helib::packedRecrypt ( const CtPtrs cPtrs,
const std::vector< zzX > &  unpackConsts,
const EncryptedArray ea 
)

◆ PAlgebraLift() [1/2]

template<>
void helib::PAlgebraLift ( const NTL::ZZX &  phimx,
const NTL::vec_zz_pX &  lfactors,
NTL::vec_zz_pX &  factors,
NTL::vec_zz_pX &  crtc,
long  r 
)

◆ PAlgebraLift() [2/2]

template<typename T >
void helib::PAlgebraLift ( const NTL::ZZX &  phimx,
const T &  lfactors,
T &  factors,
T &  crtc,
long  r 
)

◆ partialMatchEncode()

PolyMod helib::partialMatchEncode ( uint32_t  input,
const Context context 
)
inline

Given a value, encode the value across the coefficients of a polynomial.

Parameters
inputThe value of which to encode.
contextThe context object holding information on how to encode the value.
Returns
A polynomial representing the encoded value.

◆ phi_N()

long helib::phi_N ( long  N)

Compute Phi(N).

◆ phiN() [1/2]

void helib::phiN ( long &  phiN,
std::vector< long > &  facts,
long  N 
)

Compute Phi(N) and also factorize N.

◆ phiN() [2/2]

void helib::phiN ( NTL::ZZ &  phiN,
std::vector< NTL::ZZ > &  facts,
const NTL::ZZ &  N 
)

◆ plaintextAutomorph() [1/2]

template<typename RX , typename type >
void helib::plaintextAutomorph ( RX &  b,
const RX &  a,
long  i,
long  j,
const EncryptedArrayDerived< type > &  ea 
)

◆ plaintextAutomorph() [2/2]

template<typename RX , typename RXModulus >
void helib::plaintextAutomorph ( RX &  bb,
const RX &  a,
long  k,
long  m,
const RXModulus &  PhimX 
)

◆ plaintextAutomorph_CKKS()

void helib::plaintextAutomorph_CKKS ( zzX b,
const zzX a,
long  j,
const EncryptedArrayCx ea 
)

◆ poly_comp()

template<typename RX >
bool helib::poly_comp ( const RX &  a,
const RX &  b 
)

◆ polyEval() [1/2]

void helib::polyEval ( Ctxt ret,
const NTL::Vec< Ctxt > &  poly,
const Ctxt x 
)

Evaluate an encrypted polynomial on an encrypted input.

Parameters
[out]resto hold the return value
[in]polythe degree-d polynomial to evaluate
[in]xthe point on which to evaluate

◆ polyEval() [2/2]

void helib::polyEval ( Ctxt ret,
NTL::ZZX  poly,
const Ctxt x,
long  k = 0 
)

Evaluate a cleartext polynomial on an encrypted input.

Parameters
[out]resto hold the return value
[in]polythe degree-d polynomial to evaluate
[in]xthe point on which to evaluate
[in]koptional optimization parameter, defaults to sqrt(d/2) rounded up or down to a power of two

◆ polyEvalMod()

long helib::polyEvalMod ( const NTL::ZZX &  poly,
long  x,
long  p 
)

Evaluates a modular integer polynomial, returns poly(x) mod p.

◆ PolyRed() [1/4]

void helib::PolyRed ( NTL::ZZX &  F,
const NTL::ZZ &  q,
bool  abs = false 
)
inline

◆ PolyRed() [2/4]

void helib::PolyRed ( NTL::ZZX &  F,
long  q,
bool  abs = false 
)
inline

◆ PolyRed() [3/4]

void helib::PolyRed ( NTL::ZZX &  out,
const NTL::ZZX &  in,
const NTL::ZZ &  q,
bool  abs = false 
)

◆ PolyRed() [4/4]

void helib::PolyRed ( NTL::ZZX &  out,
const NTL::ZZX &  in,
long  q,
bool  abs = false 
)

Reduce all the coefficients of a polynomial modulo q.

When abs=false reduce to interval (-q/2,...,q/2), when abs=true reduce to [0,q). When abs=false and q=2, maintains the same sign as the input.

◆ power()

void helib::power ( const EncryptedArray ea,
PlaintextArray pa,
long  e 
)

◆ pp_factorize()

void helib::pp_factorize ( std::vector< long > &  factors,
long  N 
)

Prime-power factorization.

◆ ppInvert() [1/4]

void helib::ppInvert ( NTL::mat_GF2 &  X,
const NTL::mat_GF2 &  A,
UNUSED long  p,
UNUSED long  r 
)
inline

◆ ppInvert() [2/4]

void helib::ppInvert ( NTL::mat_GF2E &  X,
const NTL::mat_GF2E &  A,
UNUSED long  p,
UNUSED long  r 
)
inline

◆ ppInvert() [3/4]

void helib::ppInvert ( NTL::mat_zz_p &  X,
const NTL::mat_zz_p &  A,
long  p,
long  r 
)

Compute the inverse mod p^r of an n x n matrix.

NTL's current smallint modulus zz_p::modulus() is assumed to be p^r for p prime, r >= 1 integer. For the zz_pE variant also zz_pE::modulus() must be initialized. An error is raised if A is not invertible mod p.

◆ ppInvert() [4/4]

void helib::ppInvert ( NTL::mat_zz_pE &  X,
const NTL::mat_zz_pE &  A,
long  p,
long  r 
)

◆ ppsolve() [1/2]

void helib::ppsolve ( NTL::vec_GF2E &  x,
const NTL::mat_GF2E &  A,
const NTL::vec_GF2E &  b,
long  p,
long  r 
)

A version for GF2: must have p == 2 and r == 1.

◆ ppsolve() [2/2]

void helib::ppsolve ( NTL::vec_zz_pE &  x,
const NTL::mat_zz_pE &  A,
const NTL::vec_zz_pE &  b,
long  p,
long  r 
)

Prime power solver.

A is an n x n matrix, b is a length n (row) vector, this function finds a solution for the matrix-vector equation x A = b. An error is raised if A is not invertible mod p.

NTL's current smallint modulus, zz_p::modulus(), is assumed to be p^r, for p prime, r >= 1 integer.

◆ primroot()

long helib::primroot ( long  N,
long  phiN 
)

Find a primitive root modulo N.

◆ print() [1/2]

void helib::print ( const EncryptedArray ea,
std::ostream &  s,
const PlaintextArray pa 
)

◆ print() [2/2]

void helib::print ( std::ostream &  s,
SplitNodePtr  p,
bool  first 
)

◆ print3D() [1/3]

template void helib::print3D ( const HyperCube< long > &  c)

◆ print3D() [2/3]

template void helib::print3D ( const HyperCube< NTL::zz_p > &  c)

◆ print3D() [3/3]

template<typename T >
void helib::print3D ( const HyperCube< T > &  c)

◆ print_stats()

void helib::print_stats ( std::ostream &  s)

◆ printAllTimers()

void helib::printAllTimers ( std::ostream &  str = std::cerr)

Print the value of all timers to stream.

◆ printFlow()

void helib::printFlow ( FlowGraph fg)

◆ printMatrix()

template<typename T >
void helib::printMatrix ( const Matrix< T > &  M,
std::ostream &  out = std::cout 
)

◆ printNamedTimer()

bool helib::printNamedTimer ( std::ostream &  str,
const char *  name 
)

◆ printVec()

template<typename VEC >
std::ostream& helib::printVec ( std::ostream &  s,
const VEC &  v,
long  nCoeffs = 40 
)

◆ printZZX()

std::ostream& helib::printZZX ( std::ostream &  s,
const NTL::ZZX &  poly,
long  nCoeffs = 40 
)
inline

◆ ptr2nonNull()

template<typename T >
const T* helib::ptr2nonNull ( std::initializer_list< const PtrVector< T > * >  list)

◆ random()

void helib::random ( const EncryptedArray ea,
PlaintextArray pa 
)

◆ randomPerm()

void helib::randomPerm ( Permut perm,
long  n 
)

A random size-n permutation.

◆ randomSlot()

template<typename Scheme >
Scheme::SlotType helib::randomSlot ( const Context context)

◆ randomSlot< BGV >()

template<>
BGV::SlotType helib::randomSlot< BGV > ( const Context context)

◆ randomSlot< CKKS >()

template<>
CKKS::SlotType helib::randomSlot< CKKS > ( UNUSED const Context context)

◆ RandPoly()

NTL::ZZX helib::RandPoly ( long  n,
const NTL::ZZ &  p 
)

◆ range() [1/2]

general_range<long> helib::range ( long  m,
long  n 
)
inline

◆ range() [2/2]

general_range<long> helib::range ( long  n)
inline

◆ rationalApprox() [1/2]

std::pair< long, long > helib::rationalApprox ( double  x,
long  denomBound = 0 
)

◆ rationalApprox() [2/2]

std::pair< NTL::ZZ, NTL::ZZ > helib::rationalApprox ( NTL::xdouble  x,
NTL::xdouble  denomBound = NTL::xdouble(0.0) 
)

◆ rawDecrypt()

void helib::rawDecrypt ( NTL::ZZX &  plaintxt,
const std::vector< NTL::ZZX > &  zzParts,
const DoubleCRT sKey,
long  q = 0 
)

◆ read()

void helib::read ( std::istream &  s,
ModuliSizes::Entry e 
)

◆ read_ntl_vec_long()

void helib::read_ntl_vec_long ( std::istream &  str,
NTL::vec_long &  vl 
)

◆ read_raw_double()

double helib::read_raw_double ( std::istream &  str)

◆ read_raw_int()

long helib::read_raw_int ( std::istream &  str)

◆ read_raw_int32()

int helib::read_raw_int32 ( std::istream &  str)

◆ read_raw_vector() [1/3]

template<typename T >
void helib::read_raw_vector ( std::istream &  str,
std::vector< T > &  v 
)

◆ read_raw_vector() [2/3]

template<typename T >
void helib::read_raw_vector ( std::istream &  str,
std::vector< T > &  v,
const Context context 
)

◆ read_raw_vector() [3/3]

template<typename T >
void helib::read_raw_vector ( std::istream &  str,
std::vector< T > &  v,
T &  init 
)

◆ read_raw_vector< double >()

template<>
void helib::read_raw_vector< double > ( std::istream &  str,
std::vector< double > &  v 
)

◆ read_raw_vector< long >()

template<>
void helib::read_raw_vector< long > ( std::istream &  str,
std::vector< long > &  v 
)

◆ read_raw_xdouble()

NTL::xdouble helib::read_raw_xdouble ( std::istream &  str)

◆ read_raw_ZZ()

void helib::read_raw_ZZ ( std::istream &  str,
NTL::ZZ &  zz 
)

◆ readContextBase()

void helib::readContextBase ( std::istream &  s,
unsigned long &  m,
unsigned long &  p,
unsigned long &  r,
std::vector< long > &  gens,
std::vector< long > &  ords 
)

read [m p r gens ords] data, needed to construct context

read [m p r] data, needed to construct context

◆ readContextBaseBinary()

void helib::readContextBaseBinary ( std::istream &  s,
unsigned long &  m,
unsigned long &  p,
unsigned long &  r,
std::vector< long > &  gens,
std::vector< long > &  ords 
)

read [m p r gens ords] data, needed to construct context

◆ readContextBinary()

void helib::readContextBinary ( std::istream &  str,
Context context 
)

◆ readEyeCatcher()

int helib::readEyeCatcher ( std::istream &  str,
const char *  expect 
)

◆ readPubKeyBinary()

void helib::readPubKeyBinary ( std::istream &  str,
PubKey pk 
)

◆ readSecKeyBinary()

void helib::readSecKeyBinary ( std::istream &  str,
SecKey sk 
)

◆ realToEstimatedNoise()

double helib::realToEstimatedNoise ( const Ctxt ctxt,
const SecKey sk 
)

◆ recordAutomorphVal()

void helib::recordAutomorphVal ( long  k)
inline

◆ recordAutomorphVal2()

void helib::recordAutomorphVal2 ( long  k)
inline

◆ reducedCount()

long helib::reducedCount ( const std::list< long > &  x,
long  n,
bool *  aux 
)

◆ reduceModPhimX()

void helib::reduceModPhimX ( zzX poly,
const PAlgebra palg 
)

◆ registerTimer()

void helib::registerTimer ( FHEtimer timer)

◆ RelaxedInv() [1/2]

void helib::RelaxedInv ( NTL::Mat< NTL::GF2 > &  x,
const NTL::Mat< NTL::GF2 > &  a 
)

◆ RelaxedInv() [2/2]

void helib::RelaxedInv ( NTL::Mat< NTL::zz_p > &  x,
const NTL::Mat< NTL::zz_p > &  a 
)

◆ rem()

void helib::rem ( NTL::zz_pX &  r,
const NTL::zz_pX &  a,
const zz_pXModulus1 ff 
)

◆ removeDups()

void helib::removeDups ( std::list< long > &  x,
bool *  aux 
)

◆ repack() [1/2]

long helib::repack ( const CtPtrs packed,
const CtPtrs unpacked,
const EncryptedArray ea 
)

◆ repack() [2/2]

void helib::repack ( Ctxt packed,
const CtPtrs unpacked,
const EncryptedArray ea 
)

◆ replicate() [1/3]

template<typename Scheme >
void helib::replicate ( const EncryptedArray ,
Ptxt< Scheme > &  ptxt,
long  i 
)

Replicate single slot of a Ptxt object across all of its slots.

Template Parameters
SchemeEncryption scheme used (must be BGV or CKKS).
Parameters
ptxtPlaintext on which to do the replication.
iPosition of the slot to replicate.
Returns
Reference to *this post replication.

◆ replicate() [2/3]

void helib::replicate ( const EncryptedArray ea,
Ctxt ctx,
long  pos 
)

The value in slot #pos is replicated in all other slots. On an n-slot ciphertext, this algorithm performs O(log n) 1D rotations.

◆ replicate() [3/3]

void helib::replicate ( const EncryptedArray ea,
PlaintextArray pa,
long  i 
)

◆ replicate0()

void helib::replicate0 ( const EncryptedArray ea,
Ctxt ctxt,
long  pos 
)

A lower-level routine. Same as replicate, but assumes all slots are zero except slot #pos.

◆ replicateAll() [1/3]

void helib::replicateAll ( const EncryptedArray ea,
const Ctxt ctxt,
ReplicateHandler handler,
long  recBound = 64,
RepAuxDim *  repAuxPtr = nullptr 
)

replicateAll uses a hybrid strategy, combining the O(log n) strategy of the replicate method, with an O(1) strategy, which is faster but introduces more noise. This tradeoff is controlled by the parameter recBound:

  • recBound < 0: recursion to depth |recBound| (faster, noisier)
  • recBound ==0: no recursion (slower, less noise)
  • recBound > 0: the recursion depth is chosen heuristically, but is capped at recBound

The default value for recBound is 64, this ensures that the choice is based only on the heuristic, which will introduce noise corresponding to O(log log n) levels of recursion, but still gives an algorithm that theoretically runs in time O(n).

◆ replicateAll() [2/3]

void helib::replicateAll ( std::vector< Ctxt > &  v,
const EncryptedArray ea,
const Ctxt ctxt,
long  recBound = 64,
RepAuxDim *  repAuxPtr = nullptr 
)

return the result as a std::vector of ciphertexts, mostly useful for debugging purposes (for real parameters would take a lot of memory)

◆ replicateAll() [3/3]

template<typename Scheme >
void helib::replicateAll ( std::vector< Ptxt< Scheme >> &  v,
const EncryptedArray ,
const Ptxt< Scheme > &  ptxt 
)

Generate a vector of plaintexts with each slot replicated in each plaintext.

Template Parameters
SchemeEncryption scheme used (must be BGV or CKKS).
Parameters
vVector of replicated plaintext slots.
ptxtPlaintext whose slots will be replicated.

The order of the return vector agrees with the order of the slots. i.e. the ith plaintext in the return value is a replication of *this[i].

◆ replicateAllOrig()

void helib::replicateAllOrig ( const EncryptedArray ea,
const Ctxt ctxt,
ReplicateHandler handler,
RepAux *  repAuxPtr = nullptr 
)

This function is obsolete, and is kept for historical purposes only. It was a first attempt at implementing the O(1)-amortized algorithm, but is less efficient than the function above.

◆ resetAllTimers()

void helib::resetAllTimers ( )

◆ resize() [1/7]

template<typename T >
void helib::resize ( NTL::Vec< T > &  v,
long  sz 
)

◆ resize() [2/7]

template<typename T >
void helib::resize ( NTL::Vec< T > &  v,
long  sz,
const T &  val 
)

◆ resize() [3/7]

template<typename T >
void helib::resize ( PtrMatrix< T > &  v,
long  newSize 
)

◆ resize() [4/7]

template<typename T >
void helib::resize ( PtrVector< T > &  v,
long  newSize,
const T &  val 
)

◆ resize() [5/7]

template<typename T >
void helib::resize ( PtrVector< T > &  v,
long  newSize,
const T *  val 
)

◆ resize() [6/7]

template<typename T >
void helib::resize ( std::vector< T > &  v,
long  sz 
)

◆ resize() [7/7]

template<typename T >
void helib::resize ( std::vector< T > &  v,
long  sz,
const T &  val 
)

◆ reverse()

template<typename T >
void helib::reverse ( NTL::Vec< T > &  v,
long  lo,
long  hi 
)

Reverse a vector in place.

◆ RLWE()

double helib::RLWE ( DoubleCRT c0,
DoubleCRT c1,
const DoubleCRT s,
long  p,
NTL::ZZ *  prgSeed = nullptr 
)

Choose random c0,c1 such that c0+s*c1 = p*e for a short e Returns a high-probability bound on the L-infty norm of the canonical embedding

◆ RLWE1()

double helib::RLWE1 ( DoubleCRT c0,
const DoubleCRT c1,
const DoubleCRT s,
long  p 
)

Same as RLWE, but assumes that c1 is already chosen by the caller.

◆ rotate() [1/2]

void helib::rotate ( const EncryptedArray ea,
PlaintextArray pa,
long  k 
)

◆ rotate() [2/2]

template<typename T >
void helib::rotate ( NTL::Vec< T > &  v,
long  k 
)

Rotate a vector in place using swaps.

◆ runningSums() [1/2]

void helib::runningSums ( const EncryptedArray ea,
Ctxt ctxt 
)

A ctxt that encrypts $(x_1, ..., x_n)$ is replaced by an encryption of $(y_1, ..., y_n)$, where $y_i = sum_{j\le i} x_j$.

◆ runningSums() [2/2]

void helib::runningSums ( CtPtrs v)

◆ sameObject()

template<typename T1 , typename T2 >
bool helib::sameObject ( const T1 *  p1,
const T2 *  p2 
)

Testing if two vectors point to the same object.

◆ sampleGaussian() [1/4]

void helib::sampleGaussian ( NTL::ZZX &  poly,
long  n,
double  stdev 
)

◆ sampleGaussian() [2/4]

void helib::sampleGaussian ( std::vector< double > &  dvec,
long  n,
double  stdev 
)

Choose a vector of continuous Gaussians.

◆ sampleGaussian() [3/4]

double helib::sampleGaussian ( zzX poly,
const Context context,
double  stdev 
)

◆ sampleGaussian() [4/4]

void helib::sampleGaussian ( zzX poly,
long  n,
double  stdev 
)

Sample polynomials with Gaussian coefficients.

◆ sampleGaussianBounded()

double helib::sampleGaussianBounded ( zzX poly,
const Context context,
double  stdev 
)

◆ sampleHWt() [1/3]

void helib::sampleHWt ( NTL::ZZX &  poly,
long  n,
long  Hwt = 100 
)

◆ sampleHWt() [2/3]

double helib::sampleHWt ( zzX poly,
const Context context,
long  Hwt = 100 
)

◆ sampleHWt() [3/3]

void helib::sampleHWt ( zzX poly,
long  n,
long  Hwt = 100 
)

Sample a degree-(n-1) poly as above, with only Hwt nonzero coefficients.

◆ sampleHWtBounded()

double helib::sampleHWtBounded ( zzX poly,
const Context context,
long  Hwt = 100 
)

◆ sampleHWtBoundedEffectiveBound()

double helib::sampleHWtBoundedEffectiveBound ( const Context context,
long  Hwt = 100 
)

◆ sampleSmall() [1/3]

void helib::sampleSmall ( NTL::ZZX &  poly,
long  n,
double  prob = 0.5 
)

◆ sampleSmall() [2/3]

double helib::sampleSmall ( zzX poly,
const Context context 
)

◆ sampleSmall() [3/3]

void helib::sampleSmall ( zzX poly,
long  n,
double  prob = 0.5 
)

Sample a degree-(n-1) poly, with -1/0/+1 coefficients. Each coefficients is +-1 with probability prob/2 each, and 0 with probability 1-prob. By default, pr[nonzero]=1/2.

◆ sampleSmallBounded()

double helib::sampleSmallBounded ( zzX poly,
const Context context 
)

◆ sampleUniform() [1/4]

NTL::xdouble helib::sampleUniform ( NTL::ZZX &  poly,
const Context context,
const NTL::ZZ &  B = NTL::ZZ(100L) 
)

◆ sampleUniform() [2/4]

void helib::sampleUniform ( NTL::ZZX &  poly,
long  n,
const NTL::ZZ &  B = NTL::ZZ(100L) 
)

◆ sampleUniform() [3/4]

double helib::sampleUniform ( zzX poly,
const Context context,
long  B = 100 
)

◆ sampleUniform() [4/4]

void helib::sampleUniform ( zzX poly,
long  n,
long  B = 100 
)

Sample a degree-(n-1) ZZX, with coefficients uniform in [-B,B].

◆ seekPastChar()

void helib::seekPastChar ( std::istream &  str,
int  cc 
)

Advance the input stream beyond white spaces and a single instance of the char cc.

◆ serialize() [1/3]

void helib::serialize ( std::ostream &  os,
const PolyMod poly 
)
Parameters
osOutput std::ostream.
polyPolyMod object to be written.
Returns
Input std::ostream post writing.
Note
p2r and G are not serialized, see note of deserialize.

The output stream will be formatted as a comma-separated list surrounded by '[' and ']'.
Each coefficient of poly will be serialized in an element of such list by the >> operator.
For example if we have a PolyMod object poly such that poly[0]=coef0, poly[1]=coef1, poly[2]=coef2, and poly[i]=0 for i>2, it will be serialized as '['coef0', 'coef1', 'coef2']'.

◆ serialize() [2/3]

template<typename Scheme >
void helib::serialize ( std::ostream &  os,
const Ptxt< Scheme > &  ptxt 
)

Function to serialize a Ptxt<Scheme>.

Template Parameters
SchemeThe Ptxt object scheme. Can be only be BGV or CKKS.
Parameters
osOutput std::ostream.
ptxtPtxt object to be written.
Returns
Input std::ostream post serializing.
Note
Ptxt context is not serialized, see note of deserialize.

The output stream will be formatted as a comma-separated list surrounded by '[' and ']'.
Each slot of ptxt will be serialized in an element of such list by the serialize function determined by the scheme.
For example if we have a plaintext ptxt such that ptxt[0]=slot0, ptxt[1]=slot1, ptxt[2]=slot2, and ptxt[i]=0 for i>2, it will be serialized as '['slot0', 'slot1', 'slot2', 0, 0 ...]'.

◆ serialize() [3/3]

void helib::serialize ( std::ostream &  os,
const std::complex< double > &  num 
)

Serialize a std::complex<double> to the output stream os delimited by '[' and ']' (instead of the default '(', ')').

Parameters
osThe output stream reference.
numThe complex number to serialize.

The output will be formatted as '['num.real()', 'num.imag()']'.

◆ serialize< BGV >()

template void helib::serialize< BGV > ( std::ostream &  os,
const Ptxt< BGV > &  ptxt 
)

◆ serialize< CKKS >()

template void helib::serialize< CKKS > ( std::ostream &  os,
const Ptxt< CKKS > &  ptxt 
)

◆ setAutomorphVals()

void helib::setAutomorphVals ( std::set< long > *  aVals)
inline

◆ setAutomorphVals2()

void helib::setAutomorphVals2 ( std::set< long > *  aVals)
inline

◆ setDryRun()

bool helib::setDryRun ( bool  toWhat = true)
inline

◆ setHyperColumn() [1/6]

template void helib::setHyperColumn ( const NTL::Vec< long > &  v,
const CubeSlice< long > &  s,
long  pos 
)

◆ setHyperColumn() [2/6]

template void helib::setHyperColumn ( const NTL::Vec< long > &  v,
const CubeSlice< long > &  s,
long  pos,
const long &  val 
)

◆ setHyperColumn() [3/6]

template void helib::setHyperColumn ( const NTL::Vec< NTL::zz_p > &  v,
const CubeSlice< NTL::zz_p > &  s,
long  pos 
)

◆ setHyperColumn() [4/6]

template void helib::setHyperColumn ( const NTL::Vec< NTL::zz_p > &  v,
const CubeSlice< NTL::zz_p > &  s,
long  pos,
const NTL::zz_p &  val 
)

◆ setHyperColumn() [5/6]

template<typename T >
void helib::setHyperColumn ( const NTL::Vec< T > &  v,
const CubeSlice< T > &  s,
long  pos 
)

setHyperColumn does the reverse of getHyperColumn, setting the column to the given vector

◆ setHyperColumn() [6/6]

template<typename T >
void helib::setHyperColumn ( const NTL::Vec< T > &  v,
const CubeSlice< T > &  s,
long  pos,
const T &  val 
)

this version of setHyperColumn implicitly pads v with a default value, if v is too short

◆ setLengthZero() [1/4]

template<typename T >
void helib::setLengthZero ( NTL::Vec< T > &  vec)

◆ setLengthZero() [2/4]

template<typename T >
void helib::setLengthZero ( PtrMatrix< T > &  v)

◆ setLengthZero() [3/4]

template<typename T >
void helib::setLengthZero ( PtrVector< T > &  v)

◆ setLengthZero() [4/4]

template<typename T >
void helib::setLengthZero ( std::vector< T > &  vec)

◆ setTimersOff()

void helib::setTimersOff ( )
inline

◆ setTimersOn()

void helib::setTimersOn ( )
inline

◆ setupDebugGlobals()

void helib::setupDebugGlobals ( SecKey debug_key,
const std::shared_ptr< const EncryptedArray > &  debug_ea,
NTL::ZZX  debug_ptxt = NTL::ZZX{} 
)
inline

Setup function for setting up the global debug variables.

Note
Works only if HELIB_DEBUG is defined. It does not do anything otherwise

◆ shift()

void helib::shift ( const EncryptedArray ea,
PlaintextArray pa,
long  k 
)

◆ splitBinaryNums()

void helib::splitBinaryNums ( CtPtrs leftSplit,
CtPtrs rightSplit,
const CtPtrs input 
)

Splits a single binary number into two binary numbers leftSplit and rightSplit.

Split a binary number into two separate binary numbers.

Parameters
leftSplitLeft hand side of the split.
rightSplitRight hand side of the split.
inputBinary number to be split.
Note
The size of leftSplit and rightSplit must sum to the size of input.
The location of the split is defined by the sizes of leftSplit and rightSplit.

◆ sub()

void helib::sub ( const EncryptedArray ea,
PlaintextArray pa,
const PlaintextArray other 
)

◆ subtractBinary()

void helib::subtractBinary ( CtPtrs difference,
const CtPtrs lhs,
const CtPtrs rhs,
std::vector< zzX > *  unpackSlotEncoding = nullptr 
)

Subtracts rhs from lhs where lhs, rhs are in 2's complement.

Parameters
differenceReference to the difference post subtraction.
lhsLeft hand side of subtraction.
rhsRight hand side of subtraction.
unpackSlotEncodingvector of constants for unpacking, as used in bootstrapping.
Note
lhs and rhs must have the same size.

◆ sumOfCoeffs() [1/3]

NTL::ZZ helib::sumOfCoeffs ( const DoubleCRT f)

◆ sumOfCoeffs() [2/3]

NTL::ZZ helib::sumOfCoeffs ( const NTL::ZZX &  f)

◆ sumOfCoeffs() [3/3]

long helib::sumOfCoeffs ( const zzX f)

◆ swap() [1/2]

template<typename X , typename Cloner >
void helib::swap ( cloned_ptr< X, Cloner > &  x,
cloned_ptr< X, Cloner > &  y 
)

◆ swap() [2/2]

template<typename X , typename Cloner >
void helib::swap ( copied_ptr< X, Cloner > &  x,
copied_ptr< X, Cloner > &  y 
)

◆ tableLookup()

void helib::tableLookup ( Ctxt out,
const std::vector< zzX > &  table,
const CtPtrs idx,
std::vector< zzX > *  unpackSlotEncoding = nullptr 
)

The input is a plaintext table T[] and an array of encrypted bits I[], holding the binary representation of an index i into T. The output is the encrypted value T[i].

◆ tableWriteIn()

void helib::tableWriteIn ( const CtPtrs table,
const CtPtrs idx,
std::vector< zzX > *  unpackSlotEncoding = nullptr 
)

The input is an encrypted table T[] and an array of encrypted bits I[], holding the binary representation of an index i into T. This function increments by one the entry T[i].

◆ timer_compare()

bool helib::timer_compare ( const FHEtimer a,
const FHEtimer b 
)

◆ to_ZZX()

NTL::ZZX helib::to_ZZX ( const DoubleCRT d)
inline

◆ TofftRep_trunc() [1/2]

void helib::TofftRep_trunc ( NTL::fftRep &  y,
const NTL::zz_pX &  x,
long  k,
long  len 
)
inline

◆ TofftRep_trunc() [2/2]

void helib::TofftRep_trunc ( NTL::fftRep &  y,
const NTL::zz_pX &  x,
long  k,
UNUSED long  len,
long  lo,
long  hi 
)
inline

◆ totalProduct()

void helib::totalProduct ( Ctxt out,
const std::vector< Ctxt > &  v 
)

◆ totalSums()

void helib::totalSums ( const EncryptedArray ea,
Ctxt ctxt 
)

◆ traceMap()

void helib::traceMap ( Ctxt ctxt)

◆ TraceMap()

void helib::TraceMap ( NTL::GF2X &  w,
const NTL::GF2X &  a,
long  d,
const NTL::GF2XModulus &  F,
const NTL::GF2X &  b 
)

◆ unpack() [1/2]

long helib::unpack ( const CtPtrs unpacked,
const CtPtrs packed,
const EncryptedArray ea,
const std::vector< zzX > &  unpackSlotEncoding 
)

◆ unpack() [2/2]

void helib::unpack ( const CtPtrs unpacked,
const Ctxt packed,
const EncryptedArray ea,
const std::vector< zzX > &  unpackSlotEncoding 
)

◆ unpackSlots() [1/2]

void helib::unpackSlots ( std::vector< std::size_t > &  value,
NTL::ZZX &  pa,
const EncryptedArray ea 
)
inline

◆ unpackSlots() [2/2]

void helib::unpackSlots ( std::vector< std::size_t > &  value,
PlaintextArray pa,
const EncryptedArray ea 
)

◆ Vec_replicate()

template<typename T >
std::vector<T> helib::Vec_replicate ( const T &  a,
long  n 
)

◆ vecCopy() [1/4]

template<typename T >
void helib::vecCopy ( PtrVector< T > &  v1,
const PtrVector< T > &  v2,
long  sizeLimit = 0 
)

◆ vecCopy() [2/4]

template<typename V , typename T >
void helib::vecCopy ( PtrVector< T > &  v1,
const V &  v2,
long  sizeLimit = 0 
)

◆ vecCopy() [3/4]

template<typename V , typename T >
void helib::vecCopy ( V &  v1,
const PtrVector< T > &  v2,
long  sizeLimit = 0 
)

◆ vecCopy() [4/4]

template<typename V1 , typename V2 >
void helib::vecCopy ( V1 &  v1,
const V2 &  v2,
long  sizeLimit = 0 
)

◆ vecRed() [1/2]

void helib::vecRed ( NTL::Vec< NTL::ZZ > &  out,
const NTL::Vec< NTL::ZZ > &  in,
const NTL::ZZ &  q,
bool  abs 
)

◆ vecRed() [2/2]

void helib::vecRed ( NTL::Vec< NTL::ZZ > &  out,
const NTL::Vec< NTL::ZZ > &  in,
long  q,
bool  abs 
)

◆ vector_replicate()

template<typename T >
std::vector<T> helib::vector_replicate ( const T &  a,
long  n 
)

◆ vecToStr()

template<typename T >
std::string helib::vecToStr ( const std::vector< T > &  v)

◆ Warning() [1/2]

void helib::Warning ( const char *  msg)
inline

Function for logging a warning message.

Parameters
msgThe warning message.

◆ Warning() [2/2]

void helib::Warning ( const std::string &  msg)
inline

Function for logging a warning message.

Parameters
msgThe warning message.

◆ write()

void helib::write ( std::ostream &  s,
const ModuliSizes::Entry e 
)

◆ write_ntl_vec_long()

void helib::write_ntl_vec_long ( std::ostream &  str,
const NTL::vec_long &  vl,
long  intSize = BINIO_64BIT 
)

◆ write_raw_double()

void helib::write_raw_double ( std::ostream &  str,
const double  d 
)

◆ write_raw_int()

void helib::write_raw_int ( std::ostream &  str,
long  num 
)

◆ write_raw_int32()

void helib::write_raw_int32 ( std::ostream &  str,
int  num 
)

◆ write_raw_vector()

template<typename T >
void helib::write_raw_vector ( std::ostream &  str,
const std::vector< T > &  v 
)

◆ write_raw_vector< double >()

template<>
void helib::write_raw_vector< double > ( std::ostream &  str,
const std::vector< double > &  v 
)

◆ write_raw_vector< long >()

template<>
void helib::write_raw_vector< long > ( std::ostream &  str,
const std::vector< long > &  v 
)

◆ write_raw_xdouble()

void helib::write_raw_xdouble ( std::ostream &  str,
const NTL::xdouble  xd 
)

◆ write_raw_ZZ()

void helib::write_raw_ZZ ( std::ostream &  str,
const NTL::ZZ &  zz 
)

◆ writeContextBase()

void helib::writeContextBase ( std::ostream &  s,
const Context context 
)

write [m p r gens ords] data

write [m p r] data

◆ writeContextBaseBinary()

void helib::writeContextBaseBinary ( std::ostream &  str,
const Context context 
)

write [m p r gens ords] data

◆ writeContextBinary()

void helib::writeContextBinary ( std::ostream &  str,
const Context context 
)

◆ writeEyeCatcher()

void helib::writeEyeCatcher ( std::ostream &  str,
const char *  eye 
)

◆ writePubKeyBinary()

void helib::writePubKeyBinary ( std::ostream &  str,
const PubKey pk 
)

◆ writeSecKeyBinary()

void helib::writeSecKeyBinary ( std::ostream &  str,
const SecKey sk 
)

◆ zeroValue()

template<typename T >
T helib::zeroValue ( const T &  x)
inline

Given an object x return a zero object of the same type.

Template Parameters
TType of object to return.
Parameters
xThe object to use for returning a zero object of type T.
Returns
A zero object of type T.

◆ zeroValue< Ctxt >()

template<>
Ctxt helib::zeroValue< Ctxt > ( const Ctxt x)
inline

Given a Ctxt return a zero object of the same type.

Parameters
xThe Ctxt to use for returning a zero object of type Ctxt.
Returns
A zero object of type Ctxt.

◆ zeroValue< Ptxt< BGV > >()

template<>
Ptxt<BGV> helib::zeroValue< Ptxt< BGV > > ( const Ptxt< BGV > &  x)
inline

Given a Ptxt<BGV> return a zero object of the same type.

Parameters
xThe object to use for returning a zero object of type Ptxt<BGV>.
Returns
A zero object of type Ptxt<BGV>.

◆ zeroValue< Ptxt< CKKS > >()

template<>
Ptxt<CKKS> helib::zeroValue< Ptxt< CKKS > > ( const Ptxt< CKKS > &  x)
inline

Given a Ptxt<CKKS> return a zero object of the same type.

Parameters
xThe object to use for returning a zero object of type Ptxt<CKKS>.
Returns
A zero object of type Ptxt<CKKS>.

Variable Documentation

◆ activeContext

Context * helib::activeContext = nullptr

◆ CLOCK_SCALE

const unsigned long helib::CLOCK_SCALE = (unsigned long)CLOCKS_PER_SEC

◆ dbg_ptxt

NTL::ZZX helib::dbg_ptxt

◆ dbgEa

std::shared_ptr< const EncryptedArray > helib::dbgEa = nullptr

◆ dbgKey

SecKey * helib::dbgKey = nullptr

◆ erfc_inverse

const double helib::erfc_inverse[]
Initial value:
= {0,
0.6744897501960817432,
1.1503493803760081782,
1.5341205443525463117,
1.8627318674216514554,
2.1538746940614562129,
2.4175590162365050618,
2.6600674686174596585,
2.8856349124267571473,
3.0972690781987844623,
3.2971933456919633418,
3.4871041041144311068,
3.6683292851213230192,
3.8419306855019108708,
4.0087725941685849622,
4.1695693233491057549,
4.3249190408260462571,
4.4753284246542033544,
4.6212310014992471565,
4.7630010342678139569,
4.9009642079631930118}

◆ fhe_force_chen_han

long helib::fhe_force_chen_han = 0

◆ fhe_stats

bool helib::fhe_stats = false

◆ fhe_test_force_bsgs

int helib::fhe_test_force_bsgs = 0

◆ fhe_test_force_hoist

int helib::fhe_test_force_hoist = 0

◆ fhe_watcher

int helib::fhe_watcher = 0

◆ helog

Logger helib::helog
Initial value:
= []() -> Logger {
Logger defaultLog;
helog.setLogToFile("helib.log");
return defaultLog;
}()

Internal global logger.

◆ PI

const long double helib::PI
Initial value:
=
3.1415926535897932384626433832795028841971693993751058209749445923078164L

◆ printFlag

long helib::printFlag
extern

◆ replicateVerboseFlag

NTL_THREAD_LOCAL bool helib::replicateVerboseFlag = false

◆ thinRecrypt_initial_level

long helib::thinRecrypt_initial_level
extern
void deserialize(std::istream &is, std::complex< double > &num)
Deserialize a std::complex<double> from the input stream is delimited by '[' and ']' (instead of the ...
Definition: Ptxt.cpp:19
Logger helog
Internal global logger.
Definition: log.cpp:29
void setLogToFile(const std::string &filepath, bool overwrite=false)
Set the logger object to write to specified file.
Definition: log.cpp:49