|
| PAlgebraModDerived (const PAlgebra &zMStar, long r) |
|
| PAlgebraModDerived (const PAlgebraModDerived &other) |
|
PAlgebraModDerived & | operator= (const PAlgebraModDerived &other) |
|
virtual PAlgebraModBase * | clone () const override |
| Returns a pointer to a "clone". More...
|
|
virtual PA_tag | getTag () const override |
| Returns the type tag: PA_GF2_tag or PA_zz_p_tag. More...
|
|
virtual const PAlgebra & | getZMStar () const override |
| Returns reference to underlying PAlgebra object. More...
|
|
virtual const std::vector< NTL::ZZX > & | getFactorsOverZZ () const override |
| Returns reference to the factorization of Phi_m(X) mod p^r, but as ZZX's. More...
|
|
virtual long | getR () const override |
| The value r. More...
|
|
virtual long | getPPowR () const override |
| The value p^r. More...
|
|
virtual void | restoreContext () const override |
| Restores the NTL context for p^r. More...
|
|
const RXModulus & | getPhimXMod () const |
| Returns reference to an RXModulus representing Phi_m(X) (mod p^r) More...
|
|
const vec_RX & | getFactors () const |
| Returns reference to the factors of Phim_m(X) modulo p^r. More...
|
|
const vec_RX & | getCrtCoeffs () const |
| Returns the CRT coefficients: element i contains (prod_{j!=i} F_j)^{-1} mod F_i, where F_0 F_1 ... is the factorization of Phi_m(X) mod p^r. More...
|
|
const std::vector< std::vector< RX > > & | getMaskTable () const |
| Returns ref to maskTable, which is used to implement rotations (in the EncryptedArray module). More...
|
|
zzX | getMask_zzX (long i, long j) const override |
|
|
In all the functions below, G must be irreducible mod p, and the order of G must divide the order of p modulo m (as returned by zMStar.getOrdP()). In addition, when r > 1, G must be the monomial X (RX(1, 1))
|
void | CRT_decompose (std::vector< RX > &crt, const RX &H) const |
| Returns a std::vector crt[] such that crt[i] = H mod Ft (with t = T[i]) More...
|
|
void | CRT_reconstruct (RX &H, std::vector< RX > &crt) const |
| Returns H in R[X]/Phi_m(X) s.t. for every i<nSlots and t=T[i], we have H == crt[i] (mod Ft) More...
|
|
void | mapToSlots (MappingData< type > &mappingData, const RX &G) const |
| Compute the maps for all the slots. In the current implementation, we if r > 1, then we must have either deg(G) == 1 or G == factors[0]. More...
|
|
void | embedInAllSlots (RX &H, const RX &alpha, const MappingData< type > &mappingData) const |
| Returns H in R[X]/Phi_m(X) s.t. for every t in T, the element Ht = (H mod Ft) in R[X]/Ft(X) represents the same element as alpha in R[X]/G(X). More...
|
|
void | embedInSlots (RX &H, const std::vector< RX > &alphas, const MappingData< type > &mappingData) const |
| Returns H in R[X]/Phi_m(X) s.t. for every t in T, the element Ht = (H mod Ft) in R[X]/Ft(X) represents the same element as alphas[i] in R[X]/G(X). More...
|
|
void | decodePlaintext (std::vector< RX > &alphas, const RX &ptxt, const MappingData< type > &mappingData) const |
| Return an array such that alphas[i] in R[X]/G(X) represent the same element as rt = (H mod Ft) in R[X]/Ft(X) where t=T[i]. More...
|
|
void | buildLinPolyCoeffs (std::vector< RX > &C, const std::vector< RX > &L, const MappingData< type > &mappingData) const |
| Returns a coefficient std::vector C for the linearized polynomial representing M. More...
|
|
template<typename type>
class helib::PAlgebraModDerived< type >
A concrete instantiation of the virtual class.
Returns a coefficient std::vector C for the linearized polynomial representing M.
For h in Z/(p^r)[X] of degree < d,
G is assumed to be defined in mappingData, with d = deg(G). L describes a linear map M by describing its action on the standard power basis: M(x^j mod G) = (L[j] mod G), for j = 0..d-1.
Returns ref to maskTable, which is used to implement rotations (in the EncryptedArray module).
maskTable[i][j]
is a polynomial representation of a mask that is 1 in all slots whose i'th coordinate is at least j, and 0 elsewhere. We have:
maskTable.size() == zMStar.numOfGens() // # of generators
for i = 0..maskTable.size()-1:
maskTable[i].size() == zMStar.OrderOf(i)+1 // order of generator i