helib::PAlgebraModDerived< type > Class Template Reference

A concrete instantiation of the virtual class. More...

#include <PAlgebra.h>

Public Member Functions

 PAlgebraModDerived (const PAlgebra &zMStar, long r)
 
 PAlgebraModDerived (const PAlgebraModDerived &other)
 
PAlgebraModDerivedoperator= (const PAlgebraModDerived &other)
 
virtual PAlgebraModBaseclone () const override
 Returns a pointer to a "clone". More...
 
virtual PA_tag getTag () const override
 Returns the type tag: PA_GF2_tag or PA_zz_p_tag. More...
 
virtual const PAlgebragetZMStar () const override
 Returns reference to underlying PAlgebra object. More...
 
virtual const std::vector< NTL::ZZX > & getFactorsOverZZ () const override
 Returns reference to the factorization of Phi_m(X) mod p^r, but as ZZX's. More...
 
virtual long getR () const override
 The value r. More...
 
virtual long getPPowR () const override
 The value p^r. More...
 
virtual void restoreContext () const override
 Restores the NTL context for p^r. More...
 
const RXModulus & getPhimXMod () const
 Returns reference to an RXModulus representing Phi_m(X) (mod p^r) More...
 
const vec_RX & getFactors () const
 Returns reference to the factors of Phim_m(X) modulo p^r. More...
 
const vec_RX & getCrtCoeffs () const
 Returns the CRT coefficients: element i contains (prod_{j!=i} F_j)^{-1} mod F_i, where F_0 F_1 ... is the factorization of Phi_m(X) mod p^r. More...
 
const std::vector< std::vector< RX > > & getMaskTable () const
 Returns ref to maskTable, which is used to implement rotations (in the EncryptedArray module). More...
 
zzX getMask_zzX (long i, long j) const override
 
Embedding in the plaintext slots and decoding back

In all the functions below, G must be irreducible mod p, and the order of G must divide the order of p modulo m (as returned by zMStar.getOrdP()). In addition, when r > 1, G must be the monomial X (RX(1, 1))

void CRT_decompose (std::vector< RX > &crt, const RX &H) const
 Returns a std::vector crt[] such that crt[i] = H mod Ft (with t = T[i]) More...
 
void CRT_reconstruct (RX &H, std::vector< RX > &crt) const
 Returns H in R[X]/Phi_m(X) s.t. for every i<nSlots and t=T[i], we have H == crt[i] (mod Ft) More...
 
void mapToSlots (MappingData< type > &mappingData, const RX &G) const
 Compute the maps for all the slots. In the current implementation, we if r > 1, then we must have either deg(G) == 1 or G == factors[0]. More...
 
void embedInAllSlots (RX &H, const RX &alpha, const MappingData< type > &mappingData) const
 Returns H in R[X]/Phi_m(X) s.t. for every t in T, the element Ht = (H mod Ft) in R[X]/Ft(X) represents the same element as alpha in R[X]/G(X). More...
 
void embedInSlots (RX &H, const std::vector< RX > &alphas, const MappingData< type > &mappingData) const
 Returns H in R[X]/Phi_m(X) s.t. for every t in T, the element Ht = (H mod Ft) in R[X]/Ft(X) represents the same element as alphas[i] in R[X]/G(X). More...
 
void decodePlaintext (std::vector< RX > &alphas, const RX &ptxt, const MappingData< type > &mappingData) const
 Return an array such that alphas[i] in R[X]/G(X) represent the same element as rt = (H mod Ft) in R[X]/Ft(X) where t=T[i]. More...
 
void buildLinPolyCoeffs (std::vector< RX > &C, const std::vector< RX > &L, const MappingData< type > &mappingData) const
 Returns a coefficient std::vector C for the linearized polynomial representing M. More...
 

Detailed Description

template<typename type>
class helib::PAlgebraModDerived< type >

A concrete instantiation of the virtual class.

Constructor & Destructor Documentation

◆ PAlgebraModDerived() [1/2]

template<typename type >
helib::PAlgebraModDerived< type >::PAlgebraModDerived ( const PAlgebra zMStar,
long  r 
)

◆ PAlgebraModDerived() [2/2]

template<typename type >
helib::PAlgebraModDerived< type >::PAlgebraModDerived ( const PAlgebraModDerived< type > &  other)
inline

Member Function Documentation

◆ buildLinPolyCoeffs()

template<typename type >
void helib::PAlgebraModDerived< type >::buildLinPolyCoeffs ( std::vector< RX > &  C,
const std::vector< RX > &  L,
const MappingData< type > &  mappingData 
) const

Returns a coefficient std::vector C for the linearized polynomial representing M.

For h in Z/(p^r)[X] of degree < d,

\[ M(h(X) mod G) = sum_{i=0}^{d-1} (C[j] mod G) * (h(X^{p^j}) mod G).\]

G is assumed to be defined in mappingData, with d = deg(G). L describes a linear map M by describing its action on the standard power basis: M(x^j mod G) = (L[j] mod G), for j = 0..d-1.

◆ clone()

template<typename type >
virtual PAlgebraModBase* helib::PAlgebraModDerived< type >::clone ( ) const
inlineoverridevirtual

Returns a pointer to a "clone".

◆ CRT_decompose()

template<typename type >
void helib::PAlgebraModDerived< type >::CRT_decompose ( std::vector< RX > &  crt,
const RX &  H 
) const

Returns a std::vector crt[] such that crt[i] = H mod Ft (with t = T[i])

◆ CRT_reconstruct()

template<typename type >
void helib::PAlgebraModDerived< type >::CRT_reconstruct ( RX &  H,
std::vector< RX > &  crt 
) const

Returns H in R[X]/Phi_m(X) s.t. for every i<nSlots and t=T[i], we have H == crt[i] (mod Ft)

◆ decodePlaintext()

template<typename type >
void helib::PAlgebraModDerived< type >::decodePlaintext ( std::vector< RX > &  alphas,
const RX &  ptxt,
const MappingData< type > &  mappingData 
) const

Return an array such that alphas[i] in R[X]/G(X) represent the same element as rt = (H mod Ft) in R[X]/Ft(X) where t=T[i].

The mappingData argument should contain the output of mapToSlots(G).

◆ embedInAllSlots()

template<typename type >
void helib::PAlgebraModDerived< type >::embedInAllSlots ( RX &  H,
const RX &  alpha,
const MappingData< type > &  mappingData 
) const

Returns H in R[X]/Phi_m(X) s.t. for every t in T, the element Ht = (H mod Ft) in R[X]/Ft(X) represents the same element as alpha in R[X]/G(X).

Must have deg(alpha)<deg(G). The mappingData argument should contain the output of mapToSlots(G).

◆ embedInSlots()

template<typename type >
void helib::PAlgebraModDerived< type >::embedInSlots ( RX &  H,
const std::vector< RX > &  alphas,
const MappingData< type > &  mappingData 
) const

Returns H in R[X]/Phi_m(X) s.t. for every t in T, the element Ht = (H mod Ft) in R[X]/Ft(X) represents the same element as alphas[i] in R[X]/G(X).

Must have deg(alpha[i])<deg(G). The mappingData argument should contain the output of mapToSlots(G).

◆ getCrtCoeffs()

template<typename type >
const vec_RX& helib::PAlgebraModDerived< type >::getCrtCoeffs ( ) const
inline

Returns the CRT coefficients: element i contains (prod_{j!=i} F_j)^{-1} mod F_i, where F_0 F_1 ... is the factorization of Phi_m(X) mod p^r.

◆ getFactors()

template<typename type >
const vec_RX& helib::PAlgebraModDerived< type >::getFactors ( ) const
inline

Returns reference to the factors of Phim_m(X) modulo p^r.

◆ getFactorsOverZZ()

template<typename type >
virtual const std::vector<NTL::ZZX>& helib::PAlgebraModDerived< type >::getFactorsOverZZ ( ) const
inlineoverridevirtual

Returns reference to the factorization of Phi_m(X) mod p^r, but as ZZX's.

◆ getMask_zzX()

template<typename type >
zzX helib::PAlgebraModDerived< type >::getMask_zzX ( long  i,
long  j 
) const
inlineoverride

◆ getMaskTable()

template<typename type >
const std::vector<std::vector<RX> >& helib::PAlgebraModDerived< type >::getMaskTable ( ) const
inline

Returns ref to maskTable, which is used to implement rotations (in the EncryptedArray module).

maskTable[i][j] is a polynomial representation of a mask that is 1 in all slots whose i'th coordinate is at least j, and 0 elsewhere. We have:

  maskTable.size() == zMStar.numOfGens()     // # of generators
  for i = 0..maskTable.size()-1:
    maskTable[i].size() == zMStar.OrderOf(i)+1 // order of generator i

◆ getPhimXMod()

template<typename type >
const RXModulus& helib::PAlgebraModDerived< type >::getPhimXMod ( ) const
inline

Returns reference to an RXModulus representing Phi_m(X) (mod p^r)

◆ getPPowR()

template<typename type >
virtual long helib::PAlgebraModDerived< type >::getPPowR ( ) const
inlineoverridevirtual

The value p^r.

◆ getR()

template<typename type >
virtual long helib::PAlgebraModDerived< type >::getR ( ) const
inlineoverridevirtual

The value r.

◆ getTag()

template<typename type >
virtual PA_tag helib::PAlgebraModDerived< type >::getTag ( ) const
inlineoverridevirtual

Returns the type tag: PA_GF2_tag or PA_zz_p_tag.

◆ getZMStar()

template<typename type >
virtual const PAlgebra& helib::PAlgebraModDerived< type >::getZMStar ( ) const
inlineoverridevirtual

Returns reference to underlying PAlgebra object.

◆ mapToSlots()

template<typename type >
void helib::PAlgebraModDerived< type >::mapToSlots ( MappingData< type > &  mappingData,
const RX &  G 
) const

Compute the maps for all the slots. In the current implementation, we if r > 1, then we must have either deg(G) == 1 or G == factors[0].

◆ operator=()

template<typename type >
PAlgebraModDerived& helib::PAlgebraModDerived< type >::operator= ( const PAlgebraModDerived< type > &  other)
inline

◆ restoreContext()

template<typename type >
virtual void helib::PAlgebraModDerived< type >::restoreContext ( ) const
inlineoverridevirtual

Restores the NTL context for p^r.