helib::PAlgebra Class Reference

The structure of (Z/mZ)* /(p) More...

#include <PAlgebra.h>

Public Member Functions

 PAlgebra (long mm, long pp=2, const std::vector< long > &_gens=std::vector< long >(), const std::vector< long > &_ords=std::vector< long >())
 
bool operator== (const PAlgebra &other) const
 
bool operator!= (const PAlgebra &other) const
 
void printout (std::ostream &out=std::cout) const
 Prints the structure in a readable form. More...
 
void printAll (std::ostream &out=std::cout) const
 
long getM () const
 Returns m. More...
 
long getP () const
 Returns p. More...
 
long getPhiM () const
 Returns phi(m) More...
 
long getOrdP () const
 The order of p in (Z/mZ)^*. More...
 
long getNFactors () const
 The number of distinct prime factors of m. More...
 
long getRadM () const
 getRadM() = prod of distinct prime factors of m More...
 
double getNormBnd () const
 max-norm-on-pwfl-basis <= normBnd * max-norm-canon-embed More...
 
double getPolyNormBnd () const
 max-norm-on-pwfl-basis <= polyNormBnd * max-norm-canon-embed More...
 
long getNSlots () const
 The number of plaintext slots = phi(m)/ord(p) More...
 
long getPow2 () const
 if m = 2^k, then pow2 == k; otherwise, pow2 == 0 More...
 
const NTL::ZZX & getPhimX () const
 The cyclotomix polynomial Phi_m(X) More...
 
void set_cM (double c)
 The "ring constant" cM. More...
 
double get_cM () const
 
long numOfGens () const
 The prime-power factorization of m. More...
 
long ZmStarGen (long i) const
 the i'th generator in (Z/mZ)^* /(p) (if any) More...
 
long genToPow (long i, long j) const
 the i'th generator to the power j mod m More...
 
long frobeniusPow (long j) const
 
long OrderOf (long i) const
 The order of i'th generator (if any) More...
 
long ProdOrdsFrom (long i) const
 The product prod_{j=i}^{n-1} OrderOf(i) More...
 
bool SameOrd (long i) const
 Is ord(i'th generator) the same as its order in (Z/mZ)^*? More...
 
long FrobPerturb (long i) const
 
Translation between index, representatives, and exponents
long ith_rep (long i) const
 Returns the i'th element in T. More...
 
long indexOfRep (long t) const
 Returns the index of t in T. More...
 
bool isRep (long t) const
 Is t in T? More...
 
long indexInZmstar (long t) const
 Returns the index of t in (Z/mZ)*. More...
 
long indexInZmstar_unchecked (long t) const
 Returns the index of t in (Z/mZ)* – no range checking. More...
 
long repInZmstar_unchecked (long idx) const
 Returns rep whose index is i. More...
 
bool inZmStar (long t) const
 
long exponentiate (const std::vector< long > &exps, bool onlySameOrd=false) const
 Returns prod_i gi^{exps[i]} mod m. If onlySameOrd=true, use only generators that have the same order as in (Z/mZ)^*. More...
 
long coordinate (long i, long k) const
 Returns coordinate of index k along the i'th dimension. More...
 
std::pair< long, long > breakIndexByDim (long idx, long dim) const
 
long assembleIndexByDim (std::pair< long, long > idx, long dim) const
 The inverse of breakIndexByDim. More...
 
long addCoord (long i, long k, long offset) const
 adds offset to index k in the i'th dimension More...
 
bool nextExpVector (std::vector< long > &exps) const
 
long fftSizeNeeded () const
 The largest FFT we need to handle degree-m polynomials. More...
 
const PGFFTgetFFTInfo () const
 
const half_FFTgetHalfFFTInfo () const
 
const quarter_FFTgetQuarterFFTInfo () const
 

Detailed Description

The structure of (Z/mZ)* /(p)

A PAlgebra object is determined by an integer m and a prime p, where p does not divide m. It holds information describing the structure of (Z/mZ)^*, which is isomorphic to the Galois group over A = Z[X]/Phi_m(X)).

We represent (Z/mZ)^* as (Z/mZ)^* = (p) x (g1,g2,...) x (h1,h2,...) where the group generated by g1,g2,... consists of the elements that have the same order in (Z/mZ)^* as in (Z/mZ)^* /(p,g_1,...,g_{i-1}), and h1,h2,... generate the remaining quotient group (Z/mZ)^* /(p,g1,g2,...).

We let T subset (Z/mZ)^* be a set of representatives for the quotient group (Z/mZ)^* /(p), defined as T={ prod_i gi^{ei} * prod_j hj^{ej} } where the ei's range over 0,1,...,ord(gi)-1 and the ej's range over 0,1,...ord(hj)-1 (these last orders are in (Z/mZ)^* /(p,g1,g2,...)).

Phi_m(X) is factored as Phi_m(X)= prod_{t in T} F_t(X) mod p, where the F_t's are irreducible modulo p. An arbitrary factor is chosen as F_1, then for each t in T we associate with the index t the factor F_t(X) = GCD(F_1(X^t), Phi_m(X)).

Note that fixing a representation of the field R=(Z/pZ)[X]/F_1(X) and letting z be a root of F_1 in R (which is a primitive m-th root of unity in R), we get that F_t is the minimal polynomial of z^{1/t}.

Constructor & Destructor Documentation

◆ PAlgebra()

helib::PAlgebra::PAlgebra ( long  mm,
long  pp = 2,
const std::vector< long > &  _gens = std::vector<long>(),
const std::vector< long > &  _ords = std::vector<long>() 
)

Member Function Documentation

◆ addCoord()

long helib::PAlgebra::addCoord ( long  i,
long  k,
long  offset 
) const
inline

adds offset to index k in the i'th dimension

◆ assembleIndexByDim()

long helib::PAlgebra::assembleIndexByDim ( std::pair< long, long >  idx,
long  dim 
) const
inline

The inverse of breakIndexByDim.

◆ breakIndexByDim()

std::pair<long, long> helib::PAlgebra::breakIndexByDim ( long  idx,
long  dim 
) const
inline

Break an index into the hypercube to index of the dimension-dim subcube and index inside that subcube.

◆ coordinate()

long helib::PAlgebra::coordinate ( long  i,
long  k 
) const
inline

Returns coordinate of index k along the i'th dimension.

◆ exponentiate()

long helib::PAlgebra::exponentiate ( const std::vector< long > &  exps,
bool  onlySameOrd = false 
) const

Returns prod_i gi^{exps[i]} mod m. If onlySameOrd=true, use only generators that have the same order as in (Z/mZ)^*.

◆ fftSizeNeeded()

long helib::PAlgebra::fftSizeNeeded ( ) const
inline

The largest FFT we need to handle degree-m polynomials.

◆ frobeniusPow()

long helib::PAlgebra::frobeniusPow ( long  j) const

◆ FrobPerturb()

long helib::PAlgebra::FrobPerturb ( long  i) const
inline

◆ genToPow()

long helib::PAlgebra::genToPow ( long  i,
long  j 
) const

the i'th generator to the power j mod m

◆ get_cM()

double helib::PAlgebra::get_cM ( ) const
inline

◆ getFFTInfo()

const PGFFT& helib::PAlgebra::getFFTInfo ( ) const
inline

◆ getHalfFFTInfo()

const half_FFT& helib::PAlgebra::getHalfFFTInfo ( ) const
inline

◆ getM()

long helib::PAlgebra::getM ( ) const
inline

Returns m.

◆ getNFactors()

long helib::PAlgebra::getNFactors ( ) const
inline

The number of distinct prime factors of m.

◆ getNormBnd()

double helib::PAlgebra::getNormBnd ( ) const
inline

max-norm-on-pwfl-basis <= normBnd * max-norm-canon-embed

◆ getNSlots()

long helib::PAlgebra::getNSlots ( ) const
inline

The number of plaintext slots = phi(m)/ord(p)

◆ getOrdP()

long helib::PAlgebra::getOrdP ( ) const
inline

The order of p in (Z/mZ)^*.

◆ getP()

long helib::PAlgebra::getP ( ) const
inline

Returns p.

◆ getPhiM()

long helib::PAlgebra::getPhiM ( ) const
inline

Returns phi(m)

◆ getPhimX()

const NTL::ZZX& helib::PAlgebra::getPhimX ( ) const
inline

The cyclotomix polynomial Phi_m(X)

◆ getPolyNormBnd()

double helib::PAlgebra::getPolyNormBnd ( ) const
inline

max-norm-on-pwfl-basis <= polyNormBnd * max-norm-canon-embed

◆ getPow2()

long helib::PAlgebra::getPow2 ( ) const
inline

if m = 2^k, then pow2 == k; otherwise, pow2 == 0

◆ getQuarterFFTInfo()

const quarter_FFT& helib::PAlgebra::getQuarterFFTInfo ( ) const
inline

◆ getRadM()

long helib::PAlgebra::getRadM ( ) const
inline

getRadM() = prod of distinct prime factors of m

◆ indexInZmstar()

long helib::PAlgebra::indexInZmstar ( long  t) const
inline

Returns the index of t in (Z/mZ)*.

◆ indexInZmstar_unchecked()

long helib::PAlgebra::indexInZmstar_unchecked ( long  t) const
inline

Returns the index of t in (Z/mZ)* – no range checking.

◆ indexOfRep()

long helib::PAlgebra::indexOfRep ( long  t) const
inline

Returns the index of t in T.

◆ inZmStar()

bool helib::PAlgebra::inZmStar ( long  t) const
inline

◆ isRep()

bool helib::PAlgebra::isRep ( long  t) const
inline

Is t in T?

◆ ith_rep()

long helib::PAlgebra::ith_rep ( long  i) const
inline

Returns the i'th element in T.

◆ nextExpVector()

bool helib::PAlgebra::nextExpVector ( std::vector< long > &  exps) const
inline

exps is an array of exponents (the dLog of some t in T), this function increment exps lexicographic order, return false if it cannot be incremented (because it is at its maximum value)

◆ numOfGens()

long helib::PAlgebra::numOfGens ( ) const
inline

The prime-power factorization of m.

The number of generators in (Z/mZ)^* /(p)

◆ operator!=()

bool helib::PAlgebra::operator!= ( const PAlgebra other) const
inline

◆ operator==()

bool helib::PAlgebra::operator== ( const PAlgebra other) const

◆ OrderOf()

long helib::PAlgebra::OrderOf ( long  i) const
inline

The order of i'th generator (if any)

◆ printAll()

void helib::PAlgebra::printAll ( std::ostream &  out = std::cout) const

◆ printout()

void helib::PAlgebra::printout ( std::ostream &  out = std::cout) const

Prints the structure in a readable form.

◆ ProdOrdsFrom()

long helib::PAlgebra::ProdOrdsFrom ( long  i) const
inline

The product prod_{j=i}^{n-1} OrderOf(i)

◆ repInZmstar_unchecked()

long helib::PAlgebra::repInZmstar_unchecked ( long  idx) const
inline

Returns rep whose index is i.

◆ SameOrd()

bool helib::PAlgebra::SameOrd ( long  i) const
inline

Is ord(i'th generator) the same as its order in (Z/mZ)^*?

◆ set_cM()

void helib::PAlgebra::set_cM ( double  c)
inline

The "ring constant" cM.

◆ ZmStarGen()

long helib::PAlgebra::ZmStarGen ( long  i) const
inline

the i'th generator in (Z/mZ)^* /(p) (if any)