|
| PAlgebra (long mm, long pp=2, const std::vector< long > &_gens=std::vector< long >(), const std::vector< long > &_ords=std::vector< long >()) |
|
bool | operator== (const PAlgebra &other) const |
|
bool | operator!= (const PAlgebra &other) const |
|
void | printout (std::ostream &out=std::cout) const |
| Prints the structure in a readable form. More...
|
|
void | printAll (std::ostream &out=std::cout) const |
|
long | getM () const |
| Returns m. More...
|
|
long | getP () const |
| Returns p. More...
|
|
long | getPhiM () const |
| Returns phi(m) More...
|
|
long | getOrdP () const |
| The order of p in (Z/mZ)^*. More...
|
|
long | getNFactors () const |
| The number of distinct prime factors of m. More...
|
|
long | getRadM () const |
| getRadM() = prod of distinct prime factors of m More...
|
|
double | getNormBnd () const |
| max-norm-on-pwfl-basis <= normBnd * max-norm-canon-embed More...
|
|
double | getPolyNormBnd () const |
| max-norm-on-pwfl-basis <= polyNormBnd * max-norm-canon-embed More...
|
|
long | getNSlots () const |
| The number of plaintext slots = phi(m)/ord(p) More...
|
|
long | getPow2 () const |
| if m = 2^k, then pow2 == k; otherwise, pow2 == 0 More...
|
|
const NTL::ZZX & | getPhimX () const |
| The cyclotomix polynomial Phi_m(X) More...
|
|
void | set_cM (double c) |
| The "ring constant" cM. More...
|
|
double | get_cM () const |
|
long | numOfGens () const |
| The prime-power factorization of m. More...
|
|
long | ZmStarGen (long i) const |
| the i'th generator in (Z/mZ)^* /(p) (if any) More...
|
|
long | genToPow (long i, long j) const |
| the i'th generator to the power j mod m More...
|
|
long | frobeniusPow (long j) const |
|
long | OrderOf (long i) const |
| The order of i'th generator (if any) More...
|
|
long | ProdOrdsFrom (long i) const |
| The product prod_{j=i}^{n-1} OrderOf(i) More...
|
|
bool | SameOrd (long i) const |
| Is ord(i'th generator) the same as its order in (Z/mZ)^*? More...
|
|
long | FrobPerturb (long i) const |
|
|
long | ith_rep (long i) const |
| Returns the i'th element in T. More...
|
|
long | indexOfRep (long t) const |
| Returns the index of t in T. More...
|
|
bool | isRep (long t) const |
| Is t in T? More...
|
|
long | indexInZmstar (long t) const |
| Returns the index of t in (Z/mZ)*. More...
|
|
long | indexInZmstar_unchecked (long t) const |
| Returns the index of t in (Z/mZ)* – no range checking. More...
|
|
long | repInZmstar_unchecked (long idx) const |
| Returns rep whose index is i. More...
|
|
bool | inZmStar (long t) const |
|
long | exponentiate (const std::vector< long > &exps, bool onlySameOrd=false) const |
| Returns prod_i gi^{exps[i]} mod m. If onlySameOrd=true, use only generators that have the same order as in (Z/mZ)^*. More...
|
|
long | coordinate (long i, long k) const |
| Returns coordinate of index k along the i'th dimension. More...
|
|
std::pair< long, long > | breakIndexByDim (long idx, long dim) const |
|
long | assembleIndexByDim (std::pair< long, long > idx, long dim) const |
| The inverse of breakIndexByDim. More...
|
|
long | addCoord (long i, long k, long offset) const |
| adds offset to index k in the i'th dimension More...
|
|
bool | nextExpVector (std::vector< long > &exps) const |
|
long | fftSizeNeeded () const |
| The largest FFT we need to handle degree-m polynomials. More...
|
|
const PGFFT & | getFFTInfo () const |
|
const half_FFT & | getHalfFFTInfo () const |
|
const quarter_FFT & | getQuarterFFTInfo () const |
|
The structure of (Z/mZ)* /(p)
A PAlgebra object is determined by an integer m and a prime p, where p does not divide m. It holds information describing the structure of (Z/mZ)^*, which is isomorphic to the Galois group over A = Z[X]/Phi_m(X)).
We represent (Z/mZ)^* as (Z/mZ)^* = (p) x (g1,g2,...) x (h1,h2,...) where the group generated by g1,g2,... consists of the elements that have the same order in (Z/mZ)^* as in (Z/mZ)^* /(p,g_1,...,g_{i-1}), and h1,h2,... generate the remaining quotient group (Z/mZ)^* /(p,g1,g2,...).
We let T subset (Z/mZ)^* be a set of representatives for the quotient group (Z/mZ)^* /(p), defined as T={ prod_i gi^{ei} * prod_j hj^{ej} } where the ei's range over 0,1,...,ord(gi)-1 and the ej's range over 0,1,...ord(hj)-1 (these last orders are in (Z/mZ)^* /(p,g1,g2,...)).
Phi_m(X) is factored as Phi_m(X)= prod_{t in T} F_t(X) mod p, where the F_t's are irreducible modulo p. An arbitrary factor is chosen as F_1, then for each t in T we associate with the index t the factor F_t(X) = GCD(F_1(X^t), Phi_m(X)).
Note that fixing a representation of the field R=(Z/pZ)[X]/F_1(X) and letting z be a root of F_1 in R (which is a primitive m-th root of unity in R), we get that F_t is the minimal polynomial of z^{1/t}.