helib::DoubleCRT Class Reference

Implementing polynomials (elements in the ring R_Q) in double-CRT form. More...

#include <DoubleCRT.h>

Inheritance diagram for helib::DoubleCRT:
helib::CtxtPart

Public Member Functions

 DoubleCRT (const DoubleCRT &other)=default
 
 DoubleCRT (const NTL::ZZX &poly, const Context &_context, const IndexSet &indexSet)
 Initializing DoubleCRT from a ZZX polynomial. More...
 
 DoubleCRT (const zzX &poly, const Context &_context, const IndexSet &indexSet)
 Same as above, but with zzX's. More...
 
 DoubleCRT (const Context &_context, const IndexSet &indexSet)
 Also specify the IndexSet explicitly. More...
 
DoubleCRToperator= (const DoubleCRT &other)
 
DoubleCRToperator= (const zzX &poly)
 
DoubleCRToperator= (const NTL::ZZX &poly)
 
DoubleCRToperator= (const NTL::ZZ &num)
 
DoubleCRToperator= (const long num)
 
long getOneRow (NTL::Vec< long > &row, long idx, bool positive=false) const
 Get one row of a polynomial. More...
 
long getOneRow (NTL::zz_pX &row, long idx) const
 
void toPoly (NTL::ZZX &p, const IndexSet &s, bool positive=false) const
 Recovering the polynomial in coefficient representation. This yields an integer polynomial with coefficients in [-P/2,P/2], unless the positive flag is set to true, in which case we get coefficients in [0,P-1] (P is the product of all moduli used). Using the optional IndexSet param we compute the polynomial reduced modulo the product of only the primes in that set. More...
 
void toPoly (NTL::ZZX &p, bool positive=false) const
 
bool operator== (const DoubleCRT &other) const
 
bool operator!= (const DoubleCRT &other) const
 
DoubleCRTSetZero ()
 
DoubleCRTSetOne ()
 
NTL::xdouble breakIntoDigits (std::vector< DoubleCRT > &dgts) const
 Break into n digits,according to the primeSets in context.digits. See Section 3.1.6 of the design document (re-linearization) Returns the sum of the canonical embedding of the digits. More...
 
void addPrimes (const IndexSet &s1, NTL::ZZX *poly_p=0)
 Expand the index set by s1. It is assumed that s1 is disjoint from the current index set. If poly_p != 0, then *poly_p will first be set to the result of applying toPoly. More...
 
double addPrimesAndScale (const IndexSet &s1)
 Expand index set by s1, and multiply by Prod_{q in s1}. s1 is disjoint from the current index set, returns log(product). More...
 
void removePrimes (const IndexSet &s1)
 Remove s1 from the index set. More...
 
void setPrimes (const IndexSet &s1)
 @ brief make prime set equal to s1 More...
 
const ContextgetContext () const
 
const IndexMap< NTL::vec_long > & getMap () const
 
const IndexSetgetIndexSet () const
 
void randomize (const NTL::ZZ *seed=nullptr)
 Fills each row i with random ints mod pi, uses NTL's PRG. More...
 
double sampleSmall ()
 Coefficients are -1/0/1, Prob[0]=1/2. More...
 
double sampleSmallBounded ()
 
double sampleHWt (long Hwt)
 Coefficients are -1/0/1 with pre-specified number of nonzeros. More...
 
double sampleHWtBounded (long Hwt)
 
double sampleGaussian (double stdev=0.0)
 Coefficients are Gaussians Return a high probability bound on L-infty norm of canonical embedding. More...
 
double sampleGaussianBounded (double stdev=0.0)
 
double sampleUniform (long B)
 Coefficients are uniform in [-B..B]. More...
 
NTL::xdouble sampleUniform (const NTL::ZZ &B)
 
void scaleDownToSet (const IndexSet &s, long ptxtSpace, NTL::ZZX &delta)
 
void FFT (const NTL::ZZX &poly, const IndexSet &s)
 
void FFT (const zzX &poly, const IndexSet &s)
 
void reduce () const
 
void read (std::istream &str)
 
void write (std::ostream &str) const
 
Arithmetic operation

Only the "destructive" versions are used, i.e., a += b is implemented but not a + b.

DoubleCRTNegate (const DoubleCRT &other)
 
DoubleCRTNegate ()
 
DoubleCRToperator+= (const DoubleCRT &other)
 
DoubleCRToperator+= (const NTL::ZZX &poly)
 
DoubleCRToperator+= (const NTL::ZZ &num)
 
DoubleCRToperator+= (long num)
 
DoubleCRToperator-= (const DoubleCRT &other)
 
DoubleCRToperator-= (const NTL::ZZX &poly)
 
DoubleCRToperator-= (const NTL::ZZ &num)
 
DoubleCRToperator-= (long num)
 
DoubleCRToperator++ ()
 
DoubleCRToperator-- ()
 
void operator++ (int)
 
void operator-- (int)
 
DoubleCRToperator*= (const DoubleCRT &other)
 
DoubleCRToperator*= (const NTL::ZZX &poly)
 
DoubleCRToperator*= (const NTL::ZZ &num)
 
DoubleCRToperator*= (long num)
 
void Add (const DoubleCRT &other, bool matchIndexSets=true)
 
void Sub (const DoubleCRT &other, bool matchIndexSets=true)
 
void Mul (const DoubleCRT &other, bool matchIndexSets=true)
 
DoubleCRToperator/= (const NTL::ZZ &num)
 
DoubleCRToperator/= (long num)
 
void Exp (long k)
 Small-exponent polynomial exponentiation. More...
 
void automorph (long k)
 Apply the automorphism F(X) --> F(X^k) (with gcd(k,m)=1) More...
 
DoubleCRToperator>>= (long k)
 
void complexConj ()
 Compute the complex conjugate, the same as automorph(m-1) More...
 

Friends

std::ostream & operator<< (std::ostream &s, const DoubleCRT &d)
 
std::istream & operator>> (std::istream &s, DoubleCRT &d)
 

Detailed Description

Implementing polynomials (elements in the ring R_Q) in double-CRT form.

Double-CRT form is a matrix of L rows and phi(m) columns. The i'th row contains the FFT of the element wrt the ith prime, i.e. the evaluations of the polynomial at the primitive mth roots of unity mod the ith prime. The polynomial thus represented is defined modulo the product of all the primes in use.

The list of primes is defined by the data member indexMap. indexMap.getIndexSet() defines the set of indices of primes associated with this DoubleCRT object: they index the primes stored in the associated Context.

Arithmetic operations are computed modulo the product of the primes in use and also modulo Phi_m(X). Arithmetic operations can only be applied to DoubleCRT objects relative to the same context, trying to add/multiply objects that have different Context objects will raise an error.

Constructor & Destructor Documentation

◆ DoubleCRT() [1/4]

helib::DoubleCRT::DoubleCRT ( const DoubleCRT other)
default

◆ DoubleCRT() [2/4]

helib::DoubleCRT::DoubleCRT ( const NTL::ZZX &  poly,
const Context _context,
const IndexSet indexSet 
)

Initializing DoubleCRT from a ZZX polynomial.

Parameters
polyThe ring element itself, zero if not specified
_contextThe context for this DoubleCRT object, use "current active context" if not specified
indexSetWhich primes to use for this object, if not specified then use all of them

◆ DoubleCRT() [3/4]

helib::DoubleCRT::DoubleCRT ( const zzX poly,
const Context _context,
const IndexSet indexSet 
)

Same as above, but with zzX's.

◆ DoubleCRT() [4/4]

helib::DoubleCRT::DoubleCRT ( const Context _context,
const IndexSet indexSet 
)

Also specify the IndexSet explicitly.

Member Function Documentation

◆ Add()

void helib::DoubleCRT::Add ( const DoubleCRT other,
bool  matchIndexSets = true 
)
inline

◆ addPrimes()

void helib::DoubleCRT::addPrimes ( const IndexSet s1,
NTL::ZZX *  poly_p = 0 
)

Expand the index set by s1. It is assumed that s1 is disjoint from the current index set. If poly_p != 0, then *poly_p will first be set to the result of applying toPoly.

◆ addPrimesAndScale()

double helib::DoubleCRT::addPrimesAndScale ( const IndexSet s1)

Expand index set by s1, and multiply by Prod_{q in s1}. s1 is disjoint from the current index set, returns log(product).

◆ automorph()

void helib::DoubleCRT::automorph ( long  k)

Apply the automorphism F(X) --> F(X^k) (with gcd(k,m)=1)

◆ breakIntoDigits()

NTL::xdouble helib::DoubleCRT::breakIntoDigits ( std::vector< DoubleCRT > &  dgts) const

Break into n digits,according to the primeSets in context.digits. See Section 3.1.6 of the design document (re-linearization) Returns the sum of the canonical embedding of the digits.

◆ complexConj()

void helib::DoubleCRT::complexConj ( )

Compute the complex conjugate, the same as automorph(m-1)

◆ Exp()

void helib::DoubleCRT::Exp ( long  k)

Small-exponent polynomial exponentiation.

◆ FFT() [1/2]

void helib::DoubleCRT::FFT ( const NTL::ZZX &  poly,
const IndexSet s 
)

◆ FFT() [2/2]

void helib::DoubleCRT::FFT ( const zzX poly,
const IndexSet s 
)

◆ getContext()

const Context& helib::DoubleCRT::getContext ( ) const
inline

◆ getIndexSet()

const IndexSet& helib::DoubleCRT::getIndexSet ( ) const
inline

◆ getMap()

const IndexMap<NTL::vec_long>& helib::DoubleCRT::getMap ( ) const
inline

◆ getOneRow() [1/2]

long helib::DoubleCRT::getOneRow ( NTL::Vec< long > &  row,
long  idx,
bool  positive = false 
) const

Get one row of a polynomial.

◆ getOneRow() [2/2]

long helib::DoubleCRT::getOneRow ( NTL::zz_pX &  row,
long  idx 
) const

◆ Mul()

void helib::DoubleCRT::Mul ( const DoubleCRT other,
bool  matchIndexSets = true 
)
inline

◆ Negate() [1/2]

DoubleCRT& helib::DoubleCRT::Negate ( )
inline

◆ Negate() [2/2]

DoubleCRT & helib::DoubleCRT::Negate ( const DoubleCRT other)

◆ operator!=()

bool helib::DoubleCRT::operator!= ( const DoubleCRT other) const
inline

◆ operator*=() [1/4]

DoubleCRT& helib::DoubleCRT::operator*= ( const DoubleCRT other)
inline

◆ operator*=() [2/4]

DoubleCRT& helib::DoubleCRT::operator*= ( const NTL::ZZ &  num)
inline

◆ operator*=() [3/4]

DoubleCRT& helib::DoubleCRT::operator*= ( const NTL::ZZX &  poly)
inline

◆ operator*=() [4/4]

DoubleCRT& helib::DoubleCRT::operator*= ( long  num)
inline

◆ operator++() [1/2]

DoubleCRT& helib::DoubleCRT::operator++ ( )
inline

◆ operator++() [2/2]

void helib::DoubleCRT::operator++ ( int  )
inline

◆ operator+=() [1/4]

DoubleCRT& helib::DoubleCRT::operator+= ( const DoubleCRT other)
inline

◆ operator+=() [2/4]

DoubleCRT& helib::DoubleCRT::operator+= ( const NTL::ZZ &  num)
inline

◆ operator+=() [3/4]

DoubleCRT& helib::DoubleCRT::operator+= ( const NTL::ZZX &  poly)
inline

◆ operator+=() [4/4]

DoubleCRT& helib::DoubleCRT::operator+= ( long  num)
inline

◆ operator--() [1/2]

DoubleCRT& helib::DoubleCRT::operator-- ( )
inline

◆ operator--() [2/2]

void helib::DoubleCRT::operator-- ( int  )
inline

◆ operator-=() [1/4]

DoubleCRT& helib::DoubleCRT::operator-= ( const DoubleCRT other)
inline

◆ operator-=() [2/4]

DoubleCRT& helib::DoubleCRT::operator-= ( const NTL::ZZ &  num)
inline

◆ operator-=() [3/4]

DoubleCRT& helib::DoubleCRT::operator-= ( const NTL::ZZX &  poly)
inline

◆ operator-=() [4/4]

DoubleCRT& helib::DoubleCRT::operator-= ( long  num)
inline

◆ operator/=() [1/2]

DoubleCRT & helib::DoubleCRT::operator/= ( const NTL::ZZ &  num)

◆ operator/=() [2/2]

DoubleCRT& helib::DoubleCRT::operator/= ( long  num)
inline

◆ operator=() [1/5]

DoubleCRT & helib::DoubleCRT::operator= ( const DoubleCRT other)

◆ operator=() [2/5]

DoubleCRT& helib::DoubleCRT::operator= ( const long  num)
inline

◆ operator=() [3/5]

DoubleCRT & helib::DoubleCRT::operator= ( const NTL::ZZ &  num)

◆ operator=() [4/5]

DoubleCRT & helib::DoubleCRT::operator= ( const NTL::ZZX &  poly)

◆ operator=() [5/5]

DoubleCRT & helib::DoubleCRT::operator= ( const zzX poly)

◆ operator==()

bool helib::DoubleCRT::operator== ( const DoubleCRT other) const
inline

◆ operator>>=()

DoubleCRT& helib::DoubleCRT::operator>>= ( long  k)
inline

◆ randomize()

void helib::DoubleCRT::randomize ( const NTL::ZZ *  seed = nullptr)

Fills each row i with random ints mod pi, uses NTL's PRG.

◆ read()

void helib::DoubleCRT::read ( std::istream &  str)

◆ reduce()

void helib::DoubleCRT::reduce ( ) const
inline

◆ removePrimes()

void helib::DoubleCRT::removePrimes ( const IndexSet s1)
inline

Remove s1 from the index set.

◆ sampleGaussian()

double helib::DoubleCRT::sampleGaussian ( double  stdev = 0.0)

Coefficients are Gaussians Return a high probability bound on L-infty norm of canonical embedding.

◆ sampleGaussianBounded()

double helib::DoubleCRT::sampleGaussianBounded ( double  stdev = 0.0)

◆ sampleHWt()

double helib::DoubleCRT::sampleHWt ( long  Hwt)

Coefficients are -1/0/1 with pre-specified number of nonzeros.

◆ sampleHWtBounded()

double helib::DoubleCRT::sampleHWtBounded ( long  Hwt)

◆ sampleSmall()

double helib::DoubleCRT::sampleSmall ( )

Coefficients are -1/0/1, Prob[0]=1/2.

Sampling routines: Each of these return a high probability bound on L-infty norm of canonical embedding

◆ sampleSmallBounded()

double helib::DoubleCRT::sampleSmallBounded ( )

◆ sampleUniform() [1/2]

NTL::xdouble helib::DoubleCRT::sampleUniform ( const NTL::ZZ &  B)

◆ sampleUniform() [2/2]

double helib::DoubleCRT::sampleUniform ( long  B)

Coefficients are uniform in [-B..B].

◆ scaleDownToSet()

void helib::DoubleCRT::scaleDownToSet ( const IndexSet s,
long  ptxtSpace,
NTL::ZZX &  delta 
)

◆ SetOne()

DoubleCRT& helib::DoubleCRT::SetOne ( )
inline

◆ setPrimes()

void helib::DoubleCRT::setPrimes ( const IndexSet s1)
inline

@ brief make prime set equal to s1

◆ SetZero()

DoubleCRT& helib::DoubleCRT::SetZero ( )
inline

◆ Sub()

void helib::DoubleCRT::Sub ( const DoubleCRT other,
bool  matchIndexSets = true 
)
inline

◆ toPoly() [1/2]

void helib::DoubleCRT::toPoly ( NTL::ZZX &  p,
bool  positive = false 
) const

◆ toPoly() [2/2]

void helib::DoubleCRT::toPoly ( NTL::ZZX &  p,
const IndexSet s,
bool  positive = false 
) const

Recovering the polynomial in coefficient representation. This yields an integer polynomial with coefficients in [-P/2,P/2], unless the positive flag is set to true, in which case we get coefficients in [0,P-1] (P is the product of all moduli used). Using the optional IndexSet param we compute the polynomial reduced modulo the product of only the primes in that set.

◆ write()

void helib::DoubleCRT::write ( std::ostream &  str) const

Friends And Related Function Documentation

◆ operator<<

std::ostream& operator<< ( std::ostream &  s,
const DoubleCRT d 
)
friend

◆ operator>>

std::istream& operator>> ( std::istream &  s,
DoubleCRT d 
)
friend