DoubleCRT.h
1 /* Copyright (C) 2012-2020 IBM Corp.
2  * This program is Licensed under the Apache License, Version 2.0
3  * (the "License"); you may not use this file except in compliance
4  * with the License. You may obtain a copy of the License at
5  * http://www.apache.org/licenses/LICENSE-2.0
6  * Unless required by applicable law or agreed to in writing, software
7  * distributed under the License is distributed on an "AS IS" BASIS,
8  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
9  * See the License for the specific language governing permissions and
10  * limitations under the License. See accompanying LICENSE file.
11  */
12 #ifndef HELIB_DOUBLECRT_H
13 #define HELIB_DOUBLECRT_H
14 
18 #include <helib/zzX.h>
19 #include <helib/NumbTh.h>
20 #include <helib/IndexMap.h>
21 #include <helib/timing.h>
22 
23 namespace helib {
24 
25 class Context;
26 
33 class DoubleCRTHelper : public IndexMapInit<NTL::vec_long>
34 {
35 private:
36  long val;
37 
38 public:
39  DoubleCRTHelper(const Context& context);
40 
42  virtual void init(NTL::vec_long& v) { v.FixLength(val); }
43 
46  {
47  return new DoubleCRTHelper(*this);
48  }
49 
50 private:
51  DoubleCRTHelper(); // disable default constructor
52 };
53 
75 class DoubleCRT
76 {
77  const Context& context; // the context
78 
79  // the data itself: if the i'th prime is in use then map[i] is the std::vector
80  // of evaluations wrt this prime
82 
85  void verify();
86 
87  // Generic operators.
88  // The behavior when *this and other use different primes depends on the flag
89  // matchIndexSets. When it is set to true then the effective modulus is
90  // determined by the union of the two index sets; otherwise, the index set
91  // of *this.
92 
93  class AddFun
94  {
95  public:
96  long apply(long a, long b, long n) { return NTL::AddMod(a, b, n); }
97  };
98 
99  class SubFun
100  {
101  public:
102  long apply(long a, long b, long n) { return NTL::SubMod(a, b, n); }
103  };
104 
105  class MulFun
106  {
107  public:
108  long apply(long a, long b, long n) { return NTL::MulMod(a, b, n); }
109  };
110 
111  template <typename Fun>
112  DoubleCRT& Op(const DoubleCRT& other, Fun fun, bool matchIndexSets = true);
113 
114  DoubleCRT& do_mul(const DoubleCRT& other, bool matchIndexSets = true);
115 
116  template <typename Fun>
117  DoubleCRT& Op(const NTL::ZZ& num, Fun fun);
118 
119  template <typename Fun>
120  DoubleCRT& Op(const NTL::ZZX& poly, Fun fun);
121 
122 public:
123  // Constructors and assignment operators
124 
125  // representing an integer polynomial as DoubleCRT. If the set of primes
126  // to use is not specified, the resulting object uses all the primes in
127  // the context. If the coefficients of poly are larger than the product of
128  // the used primes, they are effectively reduced modulo that product
129 
130  // Default copy-constructor:
131  DoubleCRT(const DoubleCRT& other) = default;
132 
139  DoubleCRT(const NTL::ZZX& poly,
140  const Context& _context,
141  const IndexSet& indexSet);
142 
143 // FIXME-IndexSet
144 #if 0
145  DoubleCRT(const NTL::ZZX&poly, const Context& _context);
146 #endif
147 
148 // FIXME-IndexSet
149 #if 0
150 
154  // declared "explicit" to avoid implicit type conversion
155  explicit DoubleCRT(const NTL::ZZX&poly);
156 #endif
157 
159  DoubleCRT(const zzX& poly, const Context& _context, const IndexSet& indexSet);
160 
161 // FIXME-IndexSet
162 #if 0
163  DoubleCRT(const zzX&poly, const Context& _context);
164  explicit DoubleCRT(const zzX&poly);
165 #endif
166 
167 // FIXME-IndexSet
168 #if 0
169  // Without specifying a ZZX, we get the zero polynomial
170  explicit DoubleCRT(const Context &_context);
171  // declare "explicit" to avoid implicit type conversion
172 #endif
173 
175  DoubleCRT(const Context& _context, const IndexSet& indexSet);
176 
177  // Assignment operator, the following two lines are equivalent:
178  // DoubleCRT dCRT(poly, context, indexSet);
179  // or
180  // DoubleCRT dCRT(context, indexSet); dCRT = poly;
181 
182  DoubleCRT& operator=(const DoubleCRT& other);
183 
184  // Copy only the primes in s \intersect other.getIndexSet()
185  // void partialCopy(const DoubleCRT& other, const IndexSet& s);
186 
187  DoubleCRT& operator=(const zzX& poly);
188  DoubleCRT& operator=(const NTL::ZZX& poly);
189  DoubleCRT& operator=(const NTL::ZZ& num);
190  DoubleCRT& operator=(const long num)
191  {
192  *this = NTL::to_ZZ(num);
193  return *this;
194  }
195 
197  long getOneRow(NTL::Vec<long>& row, long idx, bool positive = false) const;
198  long getOneRow(NTL::zz_pX& row, long idx) const; // This affects NTL's modulus
199 
206  void toPoly(NTL::ZZX& p, const IndexSet& s, bool positive = false) const;
207  void toPoly(NTL::ZZX& p, bool positive = false) const;
208 
209  // The variant toPolyMod has another argument, which is a modulus Q, and it
210  // computes toPoly() mod Q. This is offered as a separate function in the
211  // hope that one day we will figure out a more efficient method of computing
212  // this. Right now it is not implemented
213  //
214  // void toPolyMod(ZZX& p, const ZZ &Q, const IndexSet& s) const;
215 
216  bool operator==(const DoubleCRT& other) const
217  {
218  assertEq(&context,
219  &other.context,
220  "Cannot compare DoubleCRTs with different context");
221  return map == other.map;
222  }
223 
224  bool operator!=(const DoubleCRT& other) const { return !(*this == other); }
225 
226  // @brief Set to zero
228  {
229  *this = NTL::ZZ::zero();
230  return *this;
231  }
232 
233  // @brief Set to one
235  {
236  *this = 1;
237  return *this;
238  }
239 
243  NTL::xdouble breakIntoDigits(std::vector<DoubleCRT>& dgts) const;
244 
249  void addPrimes(const IndexSet& s1, NTL::ZZX* poly_p = 0);
250 
253  double addPrimesAndScale(const IndexSet& s1);
254 
256  void removePrimes(const IndexSet& s1) { map.remove(s1); }
257 
259  void setPrimes(const IndexSet& s1)
260  {
261  addPrimes(s1 / getIndexSet());
262  removePrimes(getIndexSet() / s1);
263  }
264 
270 
272  // Addition, negation, subtraction
273  DoubleCRT& Negate(const DoubleCRT& other);
274  DoubleCRT& Negate() { return Negate(*this); }
275 
276  DoubleCRT& operator+=(const DoubleCRT& other) { return Op(other, AddFun()); }
277 
278  DoubleCRT& operator+=(const NTL::ZZX& poly) { return Op(poly, AddFun()); }
279 
280  DoubleCRT& operator+=(const NTL::ZZ& num) { return Op(num, AddFun()); }
281 
282  DoubleCRT& operator+=(long num) { return Op(NTL::to_ZZ(num), AddFun()); }
283 
284  DoubleCRT& operator-=(const DoubleCRT& other) { return Op(other, SubFun()); }
285 
286  DoubleCRT& operator-=(const NTL::ZZX& poly) { return Op(poly, SubFun()); }
287 
288  DoubleCRT& operator-=(const NTL::ZZ& num) { return Op(num, SubFun()); }
289 
290  DoubleCRT& operator-=(long num) { return Op(NTL::to_ZZ(num), SubFun()); }
291 
292  // These are the prefix versions, ++dcrt and --dcrt.
293  DoubleCRT& operator++() { return (*this += 1); };
294  DoubleCRT& operator--() { return (*this -= 1); };
295 
296  // These are the postfix versions -- return type is void,
297  // so it is offered just for style...
298  void operator++(int) { *this += 1; };
299  void operator--(int) { *this -= 1; };
300 
301  // Multiplication
303  {
304  // return Op(other,MulFun());
305  return do_mul(other);
306  }
307 
308  DoubleCRT& operator*=(const NTL::ZZX& poly) { return Op(poly, MulFun()); }
309 
310  DoubleCRT& operator*=(const NTL::ZZ& num) { return Op(num, MulFun()); }
311 
312  DoubleCRT& operator*=(long num) { return Op(NTL::to_ZZ(num), MulFun()); }
313 
314  // NOTE: the matchIndexSets business in the following routines
315  // is DEPRECATED. The requirement is that the prime set of other
316  // must contain the prime set of *this. If not, an exception is raised.
317  // Also, if matchIndexSets == true and the prime set of *this does
318  // not contain the prime set of other, an exception is also raised.
319 
320  // Procedural equivalents, supporting also the matchIndexSets flag
321  void Add(const DoubleCRT& other, bool matchIndexSets = true)
322  {
323  Op(other, AddFun(), matchIndexSets);
324  }
325 
326  void Sub(const DoubleCRT& other, bool matchIndexSets = true)
327  {
328  Op(other, SubFun(), matchIndexSets);
329  }
330 
331  void Mul(const DoubleCRT& other, bool matchIndexSets = true)
332  {
333  // Op(other, MulFun(), matchIndexSets);
334  do_mul(other, matchIndexSets);
335  }
336 
337  // Division by constant
338  DoubleCRT& operator/=(const NTL::ZZ& num);
339  DoubleCRT& operator/=(long num) { return (*this /= NTL::to_ZZ(num)); }
340 
342  void Exp(long k);
343 
345  void automorph(long k);
347  {
348  automorph(k);
349  return *this;
350  }
351 
353  void complexConj();
355 
356  // Utilities
357 
358  const Context& getContext() const { return context; }
359  const IndexMap<NTL::vec_long>& getMap() const { return map; }
360  const IndexSet& getIndexSet() const { return map.getIndexSet(); }
361 
362  // Choose random DoubleCRT's, either at random or with small/Gaussian
363  // coefficients.
364 
366  void randomize(const NTL::ZZ* seed = nullptr);
367 
371 
373  double sampleSmall();
374  double sampleSmallBounded();
375 
377  double sampleHWt(long Hwt);
378  double sampleHWtBounded(long Hwt);
379 
382  double sampleGaussian(double stdev = 0.0);
383  double sampleGaussianBounded(double stdev = 0.0);
384 
386  double sampleUniform(long B);
387  NTL::xdouble sampleUniform(const NTL::ZZ& B);
388 
389  // used to implement modulus switching
390  void scaleDownToSet(const IndexSet& s, long ptxtSpace, NTL::ZZX& delta);
391 
392  void FFT(const NTL::ZZX& poly, const IndexSet& s);
393  void FFT(const zzX& poly, const IndexSet& s);
394  // for internal use
395 
396  void reduce() const {} // place-holder for consistent with AltCRT
397 
398  // Raw I/O
399  void read(std::istream& str);
400  void write(std::ostream& str) const;
401 
402  // I/O: ONLY the matrix is outputted/recovered, not the moduli chain!! An
403  // error is raised on input if this is not consistent with the current chain
404 
405  friend std::ostream& operator<<(std::ostream& s, const DoubleCRT& d);
406  friend std::istream& operator>>(std::istream& s, DoubleCRT& d);
407 };
408 
409 inline void conv(DoubleCRT& d, const NTL::ZZX& p) { d = p; }
410 
411 // FIXME-IndexSet
412 #if 0
413 inline DoubleCRT to_DoubleCRT(const NTL::ZZX& p) {
414  return DoubleCRT(p);
415 }
416 #endif
417 
418 inline void conv(NTL::ZZX& p, const DoubleCRT& d) { d.toPoly(p); }
419 
420 inline NTL::ZZX to_ZZX(const DoubleCRT& d)
421 {
422  NTL::ZZX p;
423  d.toPoly(p);
424  return p;
425 }
426 
427 typedef std::shared_ptr<DoubleCRT> DCRTptr;
428 typedef std::shared_ptr<NTL::ZZX> ZZXptr;
429 
430 } // namespace helib
431 
432 #endif // #ifndef HELIB_DOUBLECRT_H
DoubleCRT & SetOne()
Definition: DoubleCRT.h:234
void complexConj()
Compute the complex conjugate, the same as automorph(m-1)
Definition: DoubleCRT.cpp:1086
DoubleCRT & operator*=(const NTL::ZZ &num)
Definition: DoubleCRT.h:310
NTL::ZZX to_ZZX(const DoubleCRT &d)
Definition: DoubleCRT.h:420
const IndexMap< NTL::vec_long > & getMap() const
Definition: DoubleCRT.h:359
NTL::Vec< long > zzX
Definition: zzX.h:24
Implementing polynomials (elements in the ring R_Q) in double-CRT form.
Definition: DoubleCRT.h:76
void toPoly(NTL::ZZX &p, const IndexSet &s, bool positive=false) const
Recovering the polynomial in coefficient representation. This yields an integer polynomial with coeff...
Definition: DoubleCRT.cpp:771
long getOneRow(NTL::Vec< long > &row, long idx, bool positive=false) const
Get one row of a polynomial.
Definition: DoubleCRT.cpp:747
double sampleHWtBounded(long Hwt)
Definition: DoubleCRT.cpp:1257
DoubleCRT & operator+=(long num)
Definition: DoubleCRT.h:282
const Context & getContext() const
Definition: DoubleCRT.h:358
DoubleCRT & operator-=(const NTL::ZZ &num)
Definition: DoubleCRT.h:288
double sampleGaussianBounded(double stdev=0.0)
Definition: DoubleCRT.cpp:1276
const IndexSet & getIndexSet() const
Get the underlying index set.
Definition: IndexMap.h:66
void assertEq(const T &a, const T &b, const std::string &message)
Definition: assertions.h:108
void operator--(int)
Definition: DoubleCRT.h:299
bool operator!=(const DoubleCRT &other) const
Definition: DoubleCRT.h:224
friend std::istream & operator>>(std::istream &s, DoubleCRT &d)
Definition: DoubleCRT.cpp:1370
virtual IndexMapInit< NTL::vec_long > * clone() const
clone allocates a new object and copies the content
Definition: DoubleCRT.h:45
void read(std::istream &str)
Definition: DoubleCRT.cpp:1420
double sampleGaussian(double stdev=0.0)
Coefficients are Gaussians Return a high probability bound on L-infty norm of canonical embedding.
Definition: DoubleCRT.cpp:1266
DoubleCRT & operator*=(long num)
Definition: DoubleCRT.h:312
A dynamic set of non-negative integers.
Definition: IndexSet.h:31
const IndexSet & getIndexSet() const
Definition: DoubleCRT.h:360
bool operator==(const DoubleCRT &other) const
Definition: DoubleCRT.h:216
A helper class to enforce consistency within an DoubleCRTHelper object.
Definition: DoubleCRT.h:34
DoubleCRT & operator=(const long num)
Definition: DoubleCRT.h:190
void write(std::ostream &str) const
Definition: DoubleCRT.cpp:1408
DoubleCRT & operator-=(const NTL::ZZX &poly)
Definition: DoubleCRT.h:286
void removePrimes(const IndexSet &s1)
Remove s1 from the index set.
Definition: DoubleCRT.h:256
std::shared_ptr< DoubleCRT > DCRTptr
Definition: DoubleCRT.h:427
DoubleCRT & operator--()
Definition: DoubleCRT.h:294
double sampleHWt(long Hwt)
Coefficients are -1/0/1 with pre-specified number of nonzeros.
Definition: DoubleCRT.cpp:1248
DoubleCRT & operator=(const DoubleCRT &other)
Definition: DoubleCRT.cpp:661
DoubleCRT & operator/=(long num)
Definition: DoubleCRT.h:339
DoubleCRT & operator/=(const NTL::ZZ &num)
Definition: DoubleCRT.cpp:968
double sampleSmallBounded()
Definition: DoubleCRT.cpp:1238
void automorph(long k)
Apply the automorphism F(X) --> F(X^k) (with gcd(k,m)=1)
Definition: DoubleCRT.cpp:1006
Definition: apiAttributes.h:21
void reduce() const
Definition: DoubleCRT.h:396
double sampleUniform(long B)
Coefficients are uniform in [-B..B].
Definition: DoubleCRT.cpp:1288
DoubleCRT & operator*=(const NTL::ZZX &poly)
Definition: DoubleCRT.h:308
void setPrimes(const IndexSet &s1)
@ brief make prime set equal to s1
Definition: DoubleCRT.h:259
double sampleSmall()
Coefficients are -1/0/1, Prob[0]=1/2.
Definition: DoubleCRT.cpp:1229
DoubleCRT & operator-=(long num)
Definition: DoubleCRT.h:290
DoubleCRT & operator++()
Definition: DoubleCRT.h:293
DoubleCRT & operator*=(const DoubleCRT &other)
Definition: DoubleCRT.h:302
void Sub(const DoubleCRT &other, bool matchIndexSets=true)
Definition: DoubleCRT.h:326
void addPrimes(const IndexSet &s1, NTL::ZZX *poly_p=0)
Expand the index set by s1. It is assumed that s1 is disjoint from the current index set....
Definition: DoubleCRT.cpp:411
double addPrimesAndScale(const IndexSet &s1)
Expand index set by s1, and multiply by Prod_{q in s1}. s1 is disjoint from the current index set,...
Definition: DoubleCRT.cpp:449
Maintaining the parameters.
Definition: Context.h:121
void scaleDownToSet(const IndexSet &s, long ptxtSpace, NTL::ZZX &delta)
Definition: DoubleCRT.cpp:1304
DoubleCRT(const DoubleCRT &other)=default
void Mul(const DoubleCRT &other, bool matchIndexSets=true)
Definition: DoubleCRT.h:331
void remove(long j)
Delete indexes from IndexSet, may cause objects to be destroyed.
Definition: IndexMap.h:103
Initializing elements in an IndexMap.
Definition: IndexMap.h:28
void Exp(long k)
Small-exponent polynomial exponentiation.
Definition: DoubleCRT.cpp:988
DoubleCRT & operator+=(const NTL::ZZ &num)
Definition: DoubleCRT.h:280
void conv(DoubleCRT &d, const NTL::ZZX &p)
Definition: DoubleCRT.h:409
void Add(const DoubleCRT &other, bool matchIndexSets=true)
Definition: DoubleCRT.h:321
DoubleCRT & operator-=(const DoubleCRT &other)
Definition: DoubleCRT.h:284
DoubleCRT & operator>>=(long k)
Definition: DoubleCRT.h:346
friend std::ostream & operator<<(std::ostream &s, const DoubleCRT &d)
Definition: DoubleCRT.cpp:1358
std::shared_ptr< NTL::ZZX > ZZXptr
Definition: DoubleCRT.h:428
DoubleCRT & SetZero()
Definition: DoubleCRT.h:227
DoubleCRT & operator+=(const NTL::ZZX &poly)
Definition: DoubleCRT.h:278
void randomize(const NTL::ZZ *seed=nullptr)
Fills each row i with random ints mod pi, uses NTL's PRG.
Definition: DoubleCRT.cpp:1106
DoubleCRT & Negate()
Definition: DoubleCRT.h:274
DoubleCRT & operator+=(const DoubleCRT &other)
Definition: DoubleCRT.h:276
virtual void init(NTL::vec_long &v)
the init method ensures that all rows have the same size
Definition: DoubleCRT.h:42
NTL::xdouble breakIntoDigits(std::vector< DoubleCRT > &dgts) const
Break into n digits,according to the primeSets in context.digits. See Section 3.1....
Definition: DoubleCRT.cpp:324
void FFT(const NTL::ZZX &poly, const IndexSet &s)
Definition: DoubleCRT.cpp:51
void operator++(int)
Definition: DoubleCRT.h:298