A Ctxt object holds a single ciphertext. More...

#include <Ctxt.h>

Public Member Functions

 Ctxt (const Ctxt &other)=default
 
 Ctxt (const PubKey &newPubKey, long newPtxtSpace=0)
 
 Ctxt (ZeroCtxtLike_type, const Ctxt &ctxt)
 
void DummyEncrypt (const NTL::ZZX &ptxt, double size=-1.0)
 
Ctxtoperator= (const Ctxt &other)
 
bool operator== (const Ctxt &other) const
 
bool operator!= (const Ctxt &other) const
 
bool equalsTo (const Ctxt &other, bool comparePkeys=true) const
 
void write (std::ostream &str) const
 
void read (std::istream &str)
 
Ciphertext arithmetic
void negate ()
 
Ctxtoperator+= (const Ctxt &other)
 
Ctxtoperator-= (const Ctxt &other)
 
void addCtxt (const Ctxt &other, bool negative=false)
 
void multLowLvl (const Ctxt &other, bool destructive=false)
 
Ctxtoperator*= (const Ctxt &other)
 
void automorph (long k)
 
Ctxtoperator>>= (long k)
 
void complexConj ()
 
void smartAutomorph (long k)
 automorphism with re-linearization More...
 
void frobeniusAutomorph (long j)
 applies the automorphism p^j using smartAutomorphism More...
 
Ctxtoperator+= (const Ptxt< BGV > &other)
 Plus equals operator with a BGV Ptxt. More...
 
Ctxtoperator-= (const Ptxt< BGV > &other)
 Minus equals operator with a BGV Ptxt. More...
 
Ctxtoperator*= (const Ptxt< BGV > &other)
 Times equals operator with a BGV Ptxt. More...
 
Ctxtoperator+= (const Ptxt< CKKS > &other)
 Plus equals operator with a CKKS Ptxt. More...
 
Ctxtoperator-= (const Ptxt< CKKS > &other)
 Minus equals operator with a CKKS Ptxt. More...
 
Ctxtoperator*= (const Ptxt< CKKS > &other)
 Times equals operator with a CKKS Ptxt. More...
 
Ctxtoperator*= (const NTL::ZZX &poly)
 Times equals operator with a ZZX. More...
 
Ctxtoperator*= (const long scalar)
 Times equals operator with a long. More...
 
void addConstant (const DoubleCRT &dcrt, double size=-1.0)
 
void addConstant (const NTL::ZZX &poly, double size=-1.0)
 
template<typename Scheme >
void addConstant (const Ptxt< Scheme > &ptxt)
 Add a BGV plaintext to this Ctxt. More...
 
void addConstant (const NTL::ZZ &c)
 
void addConstantCKKS (std::pair< long, long >)
 add a rational number in the form a/b, a,b are long More...
 
void addConstantCKKS (double x)
 
void addConstantCKKS (const DoubleCRT &dcrt, NTL::xdouble size=NTL::xdouble(-1.0), NTL::xdouble factor=NTL::xdouble(-1.0))
 
void addConstantCKKS (const NTL::ZZX &poly, NTL::xdouble size=NTL::xdouble(-1.0), NTL::xdouble factor=NTL::xdouble(-1.0))
 
void addConstantCKKS (const std::vector< std::complex< double >> &ptxt)
 
void addConstantCKKS (const Ptxt< CKKS > &ptxt)
 Add a CKKS plaintext to this Ctxt. More...
 
void addConstantCKKS (const NTL::ZZ &c)
 
void multByConstant (const DoubleCRT &dcrt, double size=-1.0)
 
void multByConstant (const NTL::ZZX &poly, double size=-1.0)
 
void multByConstant (const zzX &poly, double size=-1.0)
 
void multByConstant (const NTL::ZZ &c)
 
template<typename Scheme >
void multByConstant (const Ptxt< Scheme > &ptxt)
 Multiply a BGV plaintext to this Ctxt. More...
 
void multByConstantCKKS (double x)
 multiply by a rational number or floating point More...
 
void multByConstantCKKS (std::pair< long, long > num)
 
void multByConstantCKKS (const DoubleCRT &dcrt, NTL::xdouble size=NTL::xdouble(-1.0), NTL::xdouble factor=NTL::xdouble(-1.0), double roundingErr=-1.0)
 
void multByConstantCKKS (const NTL::ZZX &poly, NTL::xdouble size=NTL::xdouble(-1.0), NTL::xdouble factor=NTL::xdouble(-1.0), double roundingErr=-1.0)
 
void multByConstantCKKS (const Ptxt< CKKS > &ptxt)
 Multiply a CKKS plaintext to this Ctxt. More...
 
void multByConstantCKKS (const std::vector< std::complex< double >> &ptxt)
 
void xorConstant (const DoubleCRT &poly, UNUSED double size=-1.0)
 
void xorConstant (const NTL::ZZX &poly, double size=-1.0)
 
void nxorConstant (const DoubleCRT &poly, UNUSED double size=-1.0)
 
void nxorConstant (const NTL::ZZX &poly, double size=-1.0)
 
void divideByP ()
 
void multByP (long e=1)
 
void divideBy2 ()
 
void extractBits (std::vector< Ctxt > &bits, long nBits2extract=0)
 
void multiplyBy (const Ctxt &other)
 
void multiplyBy2 (const Ctxt &other1, const Ctxt &other2)
 
void square ()
 
void cube ()
 
void power (long e)
 raise ciphertext to some power More...
 
Ciphertext maintenance
void reducePtxtSpace (long newPtxtSpace)
 Reduce plaintext space to a divisor of the original plaintext space. More...
 
void hackPtxtSpace (long newPtxtSpace)
 
void bumpNoiseBound (double factor)
 
void reLinearize (long keyIdx=0)
 
CtxtcleanUp ()
 
void blindCtxt (const NTL::ZZX &poly)
 Add a high-noise encryption of the given constant. More...
 
NTL::xdouble modSwitchAddedNoiseBound () const
 Estimate the added noise. More...
 
void modUpToSet (const IndexSet &s)
 Modulus-switching up (to a larger modulus). Must have primeSet <= s, and s must contain either all the special primes or none of them. More...
 
void modDownToSet (const IndexSet &s)
 Modulus-switching down (to a smaller modulus). mod-switch down to primeSet \intersect s, after this call we have primeSet<=s. s must contain either all special primes or none of them. More...
 
void bringToSet (const IndexSet &s)
 make the primeSet equal to newPrimeSet, via modUpToSet and modDownToSet More...
 
double naturalSize () const
 
IndexSet naturalPrimeSet () const
 "natural size" is size before squaring More...
 
void dropSmallAndSpecialPrimes ()
 the corresponding primeSet More...
 
double capacity () const
 returns the "capacity" of a ciphertext, which is the log of the ratio of the modulus to the noise bound More...
 
long bitCapacity () const
 the capacity in bits, returned as an integer More...
 
double logOfPrimeSet () const
 returns the log of the prime set More...
 
double rawModSwitch (std::vector< NTL::ZZX > &zzParts, long toModulus) const
 Special-purpose modulus-switching for bootstrapping. More...
 
void evalPoly (const NTL::ZZX &poly)
 compute the power X,X^2,...,X^n More...
 
Utility methods
void clear ()
 
bool isEmpty () const
 Is this an empty ciphertext without any parts. More...
 
bool inCanonicalForm (long keyID=0) const
 A canonical ciphertext has (at most) handles pointing to (1,s) More...
 
bool isCorrect () const
 Would this ciphertext be decrypted without errors? More...
 
const ContextgetContext () const
 
const PubKeygetPubKey () const
 
const IndexSetgetPrimeSet () const
 
long getPtxtSpace () const
 
const NTL::xdouble & getNoiseBound () const
 
const NTL::xdouble & getRatFactor () const
 
const NTL::xdouble & getPtxtMag () const
 
void setPtxtMag (const NTL::xdouble &z)
 
long getKeyID () const
 
bool isCKKS () const
 
long effectiveR () const
 
double log_of_ratio () const
 Returns log(noiseBound) - log(q) More...
 

Static Public Member Functions

static void equalizeRationalFactors (Ctxt &c1, Ctxt &c2)
 

Friends

class PubKey
 
class SecKey
 
class BasicAutomorphPrecon
 
std::istream & operator>> (std::istream &str, Ctxt &ctxt)
 
std::ostream & operator<< (std::ostream &str, const Ctxt &ctxt)
 

Detailed Description

A Ctxt object holds a single ciphertext.

The class Ctxt includes a std::vector<CtxtPart>: For a Ctxt c, c[i] is the i'th ciphertext part, which can be used also as a DoubleCRT object (since CtxtPart is derived from DoubleCRT). By convention, c[0], the first CtxtPart object in the std::vector, has skHndl that points to 1 (i.e., it is just added in upon decryption, without being multiplied by anything). We maintain the invariance that all the parts of a ciphertext are defined relative to the same set of primes.

A ciphertext contains also pointers to the general parameters of this FHE instance and the public key, and a high-probability bound on the noise magnitude (kept in the noiseBound data member). The noise bound is a bound on the l-infinity norm of the canonical embedding of the noise polynomial, namely its evaluation in roots of the ring polynomial (which are the complex primitive roots of unity). The noise bound is added on addition, multiplied on multiplications, remains unchanged for automorphism, and is roughly scaled down by mod-switching with some added factor, and similarly scaled up by key-switching with some added factor.

Constructor & Destructor Documentation

◆ Ctxt() [1/3]

helib::Ctxt::Ctxt ( const Ctxt other)
default

◆ Ctxt() [2/3]

helib::Ctxt::Ctxt ( const PubKey newPubKey,
long  newPtxtSpace = 0 
)
explicit

◆ Ctxt() [3/3]

helib::Ctxt::Ctxt ( ZeroCtxtLike_type  ,
const Ctxt ctxt 
)

Member Function Documentation

◆ addConstant() [1/4]

void helib::Ctxt::addConstant ( const DoubleCRT dcrt,
double  size = -1.0 
)

Add a constant polynomial. If provided, size should be a high-probability bound on the L-infty norm of the canonical embedding Otherwise, for the DoubleCRT variant, a bound based on the assumption that the coefficients are uniformly and independently distributed over [-ptxtSpace/2, ptxtSpace/2]. For the other variants, explicit bounds are computed (if not CKKS).

◆ addConstant() [2/4]

void helib::Ctxt::addConstant ( const NTL::ZZ &  c)

◆ addConstant() [3/4]

void helib::Ctxt::addConstant ( const NTL::ZZX &  poly,
double  size = -1.0 
)

◆ addConstant() [4/4]

template<typename Scheme >
void helib::Ctxt::addConstant ( const Ptxt< Scheme > &  ptxt)
inline

Add a BGV plaintext to this Ctxt.

Parameters
ptxtPlaintext Ptxt object with which to add.

◆ addConstantCKKS() [1/7]

void helib::Ctxt::addConstantCKKS ( const DoubleCRT dcrt,
NTL::xdouble  size = NTL::xdouble(-1.0),
NTL::xdouble  factor = NTL::xdouble(-1.0) 
)

◆ addConstantCKKS() [2/7]

void helib::Ctxt::addConstantCKKS ( const NTL::ZZ &  c)

◆ addConstantCKKS() [3/7]

void helib::Ctxt::addConstantCKKS ( const NTL::ZZX &  poly,
NTL::xdouble  size = NTL::xdouble(-1.0),
NTL::xdouble  factor = NTL::xdouble(-1.0) 
)

◆ addConstantCKKS() [4/7]

void helib::Ctxt::addConstantCKKS ( const Ptxt< CKKS > &  ptxt)

Add a CKKS plaintext to this Ctxt.

Parameters
ptxtPlaintext Ptxt object with which to add.

◆ addConstantCKKS() [5/7]

void helib::Ctxt::addConstantCKKS ( const std::vector< std::complex< double >> &  ptxt)

◆ addConstantCKKS() [6/7]

void helib::Ctxt::addConstantCKKS ( double  x)
inline

◆ addConstantCKKS() [7/7]

void helib::Ctxt::addConstantCKKS ( std::pair< long, long >  num)

add a rational number in the form a/b, a,b are long

◆ addCtxt()

void helib::Ctxt::addCtxt ( const Ctxt other,
bool  negative = false 
)

◆ automorph()

void helib::Ctxt::automorph ( long  k)

◆ bitCapacity()

long helib::Ctxt::bitCapacity ( ) const
inline

the capacity in bits, returned as an integer

◆ blindCtxt()

void helib::Ctxt::blindCtxt ( const NTL::ZZX &  poly)

Add a high-noise encryption of the given constant.

◆ bringToSet()

void helib::Ctxt::bringToSet ( const IndexSet s)

make the primeSet equal to newPrimeSet, via modUpToSet and modDownToSet

◆ bumpNoiseBound()

void helib::Ctxt::bumpNoiseBound ( double  factor)
inline

◆ capacity()

double helib::Ctxt::capacity ( ) const
inline

returns the "capacity" of a ciphertext, which is the log of the ratio of the modulus to the noise bound

◆ cleanUp()

Ctxt & helib::Ctxt::cleanUp ( )

◆ clear()

void helib::Ctxt::clear ( )
inline

◆ complexConj()

void helib::Ctxt::complexConj ( )

◆ cube()

void helib::Ctxt::cube ( )
inline

◆ divideBy2()

void helib::Ctxt::divideBy2 ( )

◆ divideByP()

void helib::Ctxt::divideByP ( )

Divide a ciphertext by p, for plaintext space p^r, r>1. It is assumed that the ciphertext encrypts a polynomial which is zero mod p. If this is not the case then the result will not be a valid ciphertext anymore. As a side-effect, the plaintext space is reduced from p^r to p^{r-1}.

◆ dropSmallAndSpecialPrimes()

void helib::Ctxt::dropSmallAndSpecialPrimes ( )

the corresponding primeSet

drop all smallPrimes and specialPrimes, adding ctxtPrimes as necessary to ensure that the scaled noise is above the modulus-switching added noise term.

◆ DummyEncrypt()

void helib::Ctxt::DummyEncrypt ( const NTL::ZZX &  ptxt,
double  size = -1.0 
)

Dummy encryption, just encodes the plaintext in a Ctxt object If provided, size should be a high-probability bound on the L-infty norm of the canonical embedding

◆ effectiveR()

long helib::Ctxt::effectiveR ( ) const
inline

◆ equalizeRationalFactors()

void helib::Ctxt::equalizeRationalFactors ( Ctxt c1,
Ctxt c2 
)
static

◆ equalsTo()

bool helib::Ctxt::equalsTo ( const Ctxt other,
bool  comparePkeys = true 
) const

◆ evalPoly()

void helib::Ctxt::evalPoly ( const NTL::ZZX &  poly)

compute the power X,X^2,...,X^n

Evaluate the cleartext poly on the encrypted ciphertext

◆ extractBits()

void helib::Ctxt::extractBits ( std::vector< Ctxt > &  bits,
long  nBits2extract = 0 
)
inline

◆ frobeniusAutomorph()

void helib::Ctxt::frobeniusAutomorph ( long  j)

applies the automorphism p^j using smartAutomorphism

◆ getContext()

const Context& helib::Ctxt::getContext ( ) const
inline

◆ getKeyID()

long helib::Ctxt::getKeyID ( ) const

◆ getNoiseBound()

const NTL::xdouble& helib::Ctxt::getNoiseBound ( ) const
inline

◆ getPrimeSet()

const IndexSet& helib::Ctxt::getPrimeSet ( ) const
inline

◆ getPtxtMag()

const NTL::xdouble& helib::Ctxt::getPtxtMag ( ) const
inline

◆ getPtxtSpace()

long helib::Ctxt::getPtxtSpace ( ) const
inline

◆ getPubKey()

const PubKey& helib::Ctxt::getPubKey ( ) const
inline

◆ getRatFactor()

const NTL::xdouble& helib::Ctxt::getRatFactor ( ) const
inline

◆ hackPtxtSpace()

void helib::Ctxt::hackPtxtSpace ( long  newPtxtSpace)
inline

◆ inCanonicalForm()

bool helib::Ctxt::inCanonicalForm ( long  keyID = 0) const
inline

A canonical ciphertext has (at most) handles pointing to (1,s)

◆ isCKKS()

bool helib::Ctxt::isCKKS ( ) const
inline

◆ isCorrect()

bool helib::Ctxt::isCorrect ( ) const
inline

Would this ciphertext be decrypted without errors?

◆ isEmpty()

bool helib::Ctxt::isEmpty ( ) const
inline

Is this an empty ciphertext without any parts.

◆ log_of_ratio()

double helib::Ctxt::log_of_ratio ( ) const
inline

Returns log(noiseBound) - log(q)

◆ logOfPrimeSet()

double helib::Ctxt::logOfPrimeSet ( ) const
inline

returns the log of the prime set

◆ modDownToSet()

void helib::Ctxt::modDownToSet ( const IndexSet s)

Modulus-switching down (to a smaller modulus). mod-switch down to primeSet \intersect s, after this call we have primeSet<=s. s must contain either all special primes or none of them.

◆ modSwitchAddedNoiseBound()

NTL::xdouble helib::Ctxt::modSwitchAddedNoiseBound ( ) const

Estimate the added noise.

◆ modUpToSet()

void helib::Ctxt::modUpToSet ( const IndexSet s)

Modulus-switching up (to a larger modulus). Must have primeSet <= s, and s must contain either all the special primes or none of them.

◆ multByConstant() [1/5]

void helib::Ctxt::multByConstant ( const DoubleCRT dcrt,
double  size = -1.0 
)

Multiply-by-constant. If the size is not given, for the DCRT variant, we use a high probability bound assuming "random" coefficients mod ptxtSpace, while for the other variants, we use explicitly computed bounds (if not CKKS).

◆ multByConstant() [2/5]

void helib::Ctxt::multByConstant ( const NTL::ZZ &  c)

◆ multByConstant() [3/5]

void helib::Ctxt::multByConstant ( const NTL::ZZX &  poly,
double  size = -1.0 
)

◆ multByConstant() [4/5]

template<typename Scheme >
void helib::Ctxt::multByConstant ( const Ptxt< Scheme > &  ptxt)
inline

Multiply a BGV plaintext to this Ctxt.

Parameters
ptxtPlaintext Ptxt object with which to multiply.

◆ multByConstant() [5/5]

void helib::Ctxt::multByConstant ( const zzX poly,
double  size = -1.0 
)

◆ multByConstantCKKS() [1/6]

void helib::Ctxt::multByConstantCKKS ( const DoubleCRT dcrt,
NTL::xdouble  size = NTL::xdouble(-1.0),
NTL::xdouble  factor = NTL::xdouble(-1.0),
double  roundingErr = -1.0 
)

◆ multByConstantCKKS() [2/6]

void helib::Ctxt::multByConstantCKKS ( const NTL::ZZX &  poly,
NTL::xdouble  size = NTL::xdouble(-1.0),
NTL::xdouble  factor = NTL::xdouble(-1.0),
double  roundingErr = -1.0 
)
inline

◆ multByConstantCKKS() [3/6]

void helib::Ctxt::multByConstantCKKS ( const Ptxt< CKKS > &  ptxt)

Multiply a CKKS plaintext to this Ctxt.

Parameters
ptxtPlaintext Ptxt object polynomial with which to multiply.

◆ multByConstantCKKS() [4/6]

void helib::Ctxt::multByConstantCKKS ( const std::vector< std::complex< double >> &  ptxt)

◆ multByConstantCKKS() [5/6]

void helib::Ctxt::multByConstantCKKS ( double  x)
inline

multiply by a rational number or floating point

◆ multByConstantCKKS() [6/6]

void helib::Ctxt::multByConstantCKKS ( std::pair< long, long >  num)
inline

◆ multByP()

void helib::Ctxt::multByP ( long  e = 1)
inline

Multiply ciphertext by p^e, for plaintext space p^r. This also has the side-effect of increasing the plaintext space to p^{r+e}.

◆ multiplyBy()

void helib::Ctxt::multiplyBy ( const Ctxt other)

◆ multiplyBy2()

void helib::Ctxt::multiplyBy2 ( const Ctxt other1,
const Ctxt other2 
)

◆ multLowLvl()

void helib::Ctxt::multLowLvl ( const Ctxt other,
bool  destructive = false 
)

◆ naturalPrimeSet()

IndexSet helib::Ctxt::naturalPrimeSet ( ) const

"natural size" is size before squaring

◆ naturalSize()

double helib::Ctxt::naturalSize ( ) const

◆ negate()

void helib::Ctxt::negate ( )

◆ nxorConstant() [1/2]

void helib::Ctxt::nxorConstant ( const DoubleCRT poly,
UNUSED double  size = -1.0 
)
inline

◆ nxorConstant() [2/2]

void helib::Ctxt::nxorConstant ( const NTL::ZZX &  poly,
double  size = -1.0 
)
inline

◆ operator!=()

bool helib::Ctxt::operator!= ( const Ctxt other) const
inline

◆ operator*=() [1/5]

Ctxt& helib::Ctxt::operator*= ( const Ctxt other)
inline

◆ operator*=() [2/5]

Ctxt & helib::Ctxt::operator*= ( const long  scalar)

Times equals operator with a long.

Parameters
scalarConstant by which to multiply.
Returns
Reference to *this post multiplication.

◆ operator*=() [3/5]

Ctxt & helib::Ctxt::operator*= ( const NTL::ZZX &  poly)

Times equals operator with a ZZX.

Parameters
polyElement by which to multiply.
Returns
Reference to *this post multiplication.

◆ operator*=() [4/5]

Ctxt & helib::Ctxt::operator*= ( const Ptxt< BGV > &  other)

Times equals operator with a BGV Ptxt.

Parameters
otherRight hand side of multiplication.
Returns
reference to *this post multiplication.

◆ operator*=() [5/5]

Ctxt & helib::Ctxt::operator*= ( const Ptxt< CKKS > &  other)

Times equals operator with a CKKS Ptxt.

Parameters
otherRight hand side of multiplication.
Returns
Reference to *this post multiplication.

◆ operator+=() [1/3]

Ctxt& helib::Ctxt::operator+= ( const Ctxt other)
inline

◆ operator+=() [2/3]

Ctxt & helib::Ctxt::operator+= ( const Ptxt< BGV > &  other)

Plus equals operator with a BGV Ptxt.

Parameters
otherRight hand side of addition.
Returns
Reference to *this post addition.

◆ operator+=() [3/3]

Ctxt & helib::Ctxt::operator+= ( const Ptxt< CKKS > &  other)

Plus equals operator with a CKKS Ptxt.

Parameters
otherRight hand side of addition.
Returns
Reference to *this post addition.

◆ operator-=() [1/3]

Ctxt& helib::Ctxt::operator-= ( const Ctxt other)
inline

◆ operator-=() [2/3]

Ctxt & helib::Ctxt::operator-= ( const Ptxt< BGV > &  other)

Minus equals operator with a BGV Ptxt.

Parameters
otherRight hand side of subtraction.
Returns
Reference to *this post subtraction.

◆ operator-=() [3/3]

Ctxt & helib::Ctxt::operator-= ( const Ptxt< CKKS > &  other)

Minus equals operator with a CKKS Ptxt.

Parameters
otherRight hand side of subtraction.
Returns
Reference to *this post subtraction.

◆ operator=()

Ctxt& helib::Ctxt::operator= ( const Ctxt other)
inline

◆ operator==()

bool helib::Ctxt::operator== ( const Ctxt other) const
inline

◆ operator>>=()

Ctxt& helib::Ctxt::operator>>= ( long  k)
inline

◆ power()

void helib::Ctxt::power ( long  e)

raise ciphertext to some power

◆ rawModSwitch()

double helib::Ctxt::rawModSwitch ( std::vector< NTL::ZZX > &  zzParts,
long  toModulus 
) const

Special-purpose modulus-switching for bootstrapping.

Mod-switch to an externally-supplied modulus. The modulus need not be in the moduli-chain in the context, and does not even need to be a prime. The ciphertext *this is not affected, instead the result is returned in the zzParts std::vector, as a std::vector of ZZX'es. Returns an estimate for the scaled noise (not including the additive mod switching noise)

◆ read()

void helib::Ctxt::read ( std::istream &  str)

◆ reducePtxtSpace()

void helib::Ctxt::reducePtxtSpace ( long  newPtxtSpace)

Reduce plaintext space to a divisor of the original plaintext space.

◆ reLinearize()

void helib::Ctxt::reLinearize ( long  keyIdx = 0)

◆ setPtxtMag()

void helib::Ctxt::setPtxtMag ( const NTL::xdouble &  z)
inline

◆ smartAutomorph()

void helib::Ctxt::smartAutomorph ( long  k)

automorphism with re-linearization

◆ square()

void helib::Ctxt::square ( )
inline

◆ write()

void helib::Ctxt::write ( std::ostream &  str) const

◆ xorConstant() [1/2]

void helib::Ctxt::xorConstant ( const DoubleCRT poly,
UNUSED double  size = -1.0 
)
inline

Convenience method: XOR and nXOR with arbitrary plaintext space: a xor b = a+b-2ab = a + (1-2a)*b, a nxor b = 1-a-b+2ab = (b-1)(2a-1)+a

◆ xorConstant() [2/2]

void helib::Ctxt::xorConstant ( const NTL::ZZX &  poly,
double  size = -1.0 
)
inline

Friends And Related Function Documentation

◆ BasicAutomorphPrecon

friend class BasicAutomorphPrecon
friend

◆ operator<<

std::ostream& operator<< ( std::ostream &  str,
const Ctxt ctxt 
)
friend

◆ operator>>

std::istream& operator>> ( std::istream &  str,
Ctxt ctxt 
)
friend

◆ PubKey

friend class PubKey
friend

◆ SecKey

friend class SecKey
friend