A Ctxt object holds a single ciphertext. More...
#include <Ctxt.h>
Public Member Functions | |
Ctxt (const Ctxt &other)=default | |
Ctxt (const PubKey &newPubKey, long newPtxtSpace=0) | |
Ctxt (ZeroCtxtLike_type, const Ctxt &ctxt) | |
void | DummyEncrypt (const NTL::ZZX &ptxt, double size=-1.0) |
Ctxt & | operator= (const Ctxt &other) |
bool | operator== (const Ctxt &other) const |
bool | operator!= (const Ctxt &other) const |
bool | equalsTo (const Ctxt &other, bool comparePkeys=true) const |
void | write (std::ostream &str) const |
void | read (std::istream &str) |
Ciphertext arithmetic | |
void | negate () |
Ctxt & | operator+= (const Ctxt &other) |
Ctxt & | operator-= (const Ctxt &other) |
void | addCtxt (const Ctxt &other, bool negative=false) |
void | multLowLvl (const Ctxt &other, bool destructive=false) |
Ctxt & | operator*= (const Ctxt &other) |
void | automorph (long k) |
Ctxt & | operator>>= (long k) |
void | complexConj () |
void | smartAutomorph (long k) |
automorphism with re-linearization More... | |
void | frobeniusAutomorph (long j) |
applies the automorphism p^j using smartAutomorphism More... | |
Ctxt & | operator+= (const Ptxt< BGV > &other) |
Plus equals operator with a BGV Ptxt . More... | |
Ctxt & | operator-= (const Ptxt< BGV > &other) |
Minus equals operator with a BGV Ptxt . More... | |
Ctxt & | operator*= (const Ptxt< BGV > &other) |
Times equals operator with a BGV Ptxt . More... | |
Ctxt & | operator+= (const Ptxt< CKKS > &other) |
Plus equals operator with a CKKS Ptxt . More... | |
Ctxt & | operator-= (const Ptxt< CKKS > &other) |
Minus equals operator with a CKKS Ptxt . More... | |
Ctxt & | operator*= (const Ptxt< CKKS > &other) |
Times equals operator with a CKKS Ptxt . More... | |
Ctxt & | operator*= (const NTL::ZZX &poly) |
Times equals operator with a ZZX . More... | |
Ctxt & | operator*= (const long scalar) |
Times equals operator with a long . More... | |
void | addConstant (const DoubleCRT &dcrt, double size=-1.0) |
void | addConstant (const NTL::ZZX &poly, double size=-1.0) |
template<typename Scheme > | |
void | addConstant (const Ptxt< Scheme > &ptxt) |
Add a BGV plaintext to this Ctxt . More... | |
void | addConstant (const NTL::ZZ &c) |
void | addConstantCKKS (std::pair< long, long >) |
add a rational number in the form a/b, a,b are long More... | |
void | addConstantCKKS (double x) |
void | addConstantCKKS (const DoubleCRT &dcrt, NTL::xdouble size=NTL::xdouble(-1.0), NTL::xdouble factor=NTL::xdouble(-1.0)) |
void | addConstantCKKS (const NTL::ZZX &poly, NTL::xdouble size=NTL::xdouble(-1.0), NTL::xdouble factor=NTL::xdouble(-1.0)) |
void | addConstantCKKS (const std::vector< std::complex< double >> &ptxt) |
void | addConstantCKKS (const Ptxt< CKKS > &ptxt) |
Add a CKKS plaintext to this Ctxt . More... | |
void | addConstantCKKS (const NTL::ZZ &c) |
void | multByConstant (const DoubleCRT &dcrt, double size=-1.0) |
void | multByConstant (const NTL::ZZX &poly, double size=-1.0) |
void | multByConstant (const zzX &poly, double size=-1.0) |
void | multByConstant (const NTL::ZZ &c) |
template<typename Scheme > | |
void | multByConstant (const Ptxt< Scheme > &ptxt) |
Multiply a BGV plaintext to this Ctxt . More... | |
void | multByConstantCKKS (double x) |
multiply by a rational number or floating point More... | |
void | multByConstantCKKS (std::pair< long, long > num) |
void | multByConstantCKKS (const DoubleCRT &dcrt, NTL::xdouble size=NTL::xdouble(-1.0), NTL::xdouble factor=NTL::xdouble(-1.0), double roundingErr=-1.0) |
void | multByConstantCKKS (const NTL::ZZX &poly, NTL::xdouble size=NTL::xdouble(-1.0), NTL::xdouble factor=NTL::xdouble(-1.0), double roundingErr=-1.0) |
void | multByConstantCKKS (const Ptxt< CKKS > &ptxt) |
Multiply a CKKS plaintext to this Ctxt . More... | |
void | multByConstantCKKS (const std::vector< std::complex< double >> &ptxt) |
void | xorConstant (const DoubleCRT &poly, UNUSED double size=-1.0) |
void | xorConstant (const NTL::ZZX &poly, double size=-1.0) |
void | nxorConstant (const DoubleCRT &poly, UNUSED double size=-1.0) |
void | nxorConstant (const NTL::ZZX &poly, double size=-1.0) |
void | divideByP () |
void | multByP (long e=1) |
void | divideBy2 () |
void | extractBits (std::vector< Ctxt > &bits, long nBits2extract=0) |
void | multiplyBy (const Ctxt &other) |
void | multiplyBy2 (const Ctxt &other1, const Ctxt &other2) |
void | square () |
void | cube () |
void | power (long e) |
raise ciphertext to some power More... | |
Ciphertext maintenance | |
void | reducePtxtSpace (long newPtxtSpace) |
Reduce plaintext space to a divisor of the original plaintext space. More... | |
void | hackPtxtSpace (long newPtxtSpace) |
void | bumpNoiseBound (double factor) |
void | reLinearize (long keyIdx=0) |
Ctxt & | cleanUp () |
void | blindCtxt (const NTL::ZZX &poly) |
Add a high-noise encryption of the given constant. More... | |
NTL::xdouble | modSwitchAddedNoiseBound () const |
Estimate the added noise. More... | |
void | modUpToSet (const IndexSet &s) |
Modulus-switching up (to a larger modulus). Must have primeSet <= s, and s must contain either all the special primes or none of them. More... | |
void | modDownToSet (const IndexSet &s) |
Modulus-switching down (to a smaller modulus). mod-switch down to primeSet \intersect s, after this call we have primeSet<=s. s must contain either all special primes or none of them. More... | |
void | bringToSet (const IndexSet &s) |
make the primeSet equal to newPrimeSet, via modUpToSet and modDownToSet More... | |
double | naturalSize () const |
IndexSet | naturalPrimeSet () const |
"natural size" is size before squaring More... | |
void | dropSmallAndSpecialPrimes () |
the corresponding primeSet More... | |
double | capacity () const |
returns the "capacity" of a ciphertext, which is the log of the ratio of the modulus to the noise bound More... | |
long | bitCapacity () const |
the capacity in bits, returned as an integer More... | |
double | logOfPrimeSet () const |
returns the log of the prime set More... | |
double | rawModSwitch (std::vector< NTL::ZZX > &zzParts, long toModulus) const |
Special-purpose modulus-switching for bootstrapping. More... | |
void | evalPoly (const NTL::ZZX &poly) |
compute the power X,X^2,...,X^n More... | |
Utility methods | |
void | clear () |
bool | isEmpty () const |
Is this an empty ciphertext without any parts. More... | |
bool | inCanonicalForm (long keyID=0) const |
A canonical ciphertext has (at most) handles pointing to (1,s) More... | |
bool | isCorrect () const |
Would this ciphertext be decrypted without errors? More... | |
const Context & | getContext () const |
const PubKey & | getPubKey () const |
const IndexSet & | getPrimeSet () const |
long | getPtxtSpace () const |
const NTL::xdouble & | getNoiseBound () const |
const NTL::xdouble & | getRatFactor () const |
const NTL::xdouble & | getPtxtMag () const |
void | setPtxtMag (const NTL::xdouble &z) |
long | getKeyID () const |
bool | isCKKS () const |
long | effectiveR () const |
double | log_of_ratio () const |
Returns log(noiseBound) - log(q) More... | |
Static Public Member Functions | |
static void | equalizeRationalFactors (Ctxt &c1, Ctxt &c2) |
Friends | |
class | PubKey |
class | SecKey |
class | BasicAutomorphPrecon |
std::istream & | operator>> (std::istream &str, Ctxt &ctxt) |
std::ostream & | operator<< (std::ostream &str, const Ctxt &ctxt) |
Detailed Description
A Ctxt object holds a single ciphertext.
The class Ctxt includes a std::vector<CtxtPart>: For a Ctxt c, c[i] is the i'th ciphertext part, which can be used also as a DoubleCRT object (since CtxtPart is derived from DoubleCRT). By convention, c[0], the first CtxtPart object in the std::vector, has skHndl that points to 1 (i.e., it is just added in upon decryption, without being multiplied by anything). We maintain the invariance that all the parts of a ciphertext are defined relative to the same set of primes.
A ciphertext contains also pointers to the general parameters of this FHE instance and the public key, and a high-probability bound on the noise magnitude (kept in the noiseBound data member). The noise bound is a bound on the l-infinity norm of the canonical embedding of the noise polynomial, namely its evaluation in roots of the ring polynomial (which are the complex primitive roots of unity). The noise bound is added on addition, multiplied on multiplications, remains unchanged for automorphism, and is roughly scaled down by mod-switching with some added factor, and similarly scaled up by key-switching with some added factor.
Constructor & Destructor Documentation
◆ Ctxt() [1/3]
|
default |
◆ Ctxt() [2/3]
|
explicit |
◆ Ctxt() [3/3]
helib::Ctxt::Ctxt | ( | ZeroCtxtLike_type | , |
const Ctxt & | ctxt | ||
) |
Member Function Documentation
◆ addConstant() [1/4]
void helib::Ctxt::addConstant | ( | const DoubleCRT & | dcrt, |
double | size = -1.0 |
||
) |
Add a constant polynomial. If provided, size should be a high-probability bound on the L-infty norm of the canonical embedding Otherwise, for the DoubleCRT variant, a bound based on the assumption that the coefficients are uniformly and independently distributed over [-ptxtSpace/2, ptxtSpace/2]. For the other variants, explicit bounds are computed (if not CKKS).
◆ addConstant() [2/4]
void helib::Ctxt::addConstant | ( | const NTL::ZZ & | c | ) |
◆ addConstant() [3/4]
void helib::Ctxt::addConstant | ( | const NTL::ZZX & | poly, |
double | size = -1.0 |
||
) |
◆ addConstant() [4/4]
|
inline |
◆ addConstantCKKS() [1/7]
void helib::Ctxt::addConstantCKKS | ( | const DoubleCRT & | dcrt, |
NTL::xdouble | size = NTL::xdouble(-1.0) , |
||
NTL::xdouble | factor = NTL::xdouble(-1.0) |
||
) |
◆ addConstantCKKS() [2/7]
void helib::Ctxt::addConstantCKKS | ( | const NTL::ZZ & | c | ) |
◆ addConstantCKKS() [3/7]
void helib::Ctxt::addConstantCKKS | ( | const NTL::ZZX & | poly, |
NTL::xdouble | size = NTL::xdouble(-1.0) , |
||
NTL::xdouble | factor = NTL::xdouble(-1.0) |
||
) |
◆ addConstantCKKS() [4/7]
◆ addConstantCKKS() [5/7]
void helib::Ctxt::addConstantCKKS | ( | const std::vector< std::complex< double >> & | ptxt | ) |
◆ addConstantCKKS() [6/7]
|
inline |
◆ addConstantCKKS() [7/7]
void helib::Ctxt::addConstantCKKS | ( | std::pair< long, long > | num | ) |
add a rational number in the form a/b, a,b are long
◆ addCtxt()
void helib::Ctxt::addCtxt | ( | const Ctxt & | other, |
bool | negative = false |
||
) |
◆ automorph()
void helib::Ctxt::automorph | ( | long | k | ) |
◆ bitCapacity()
|
inline |
the capacity in bits, returned as an integer
◆ blindCtxt()
void helib::Ctxt::blindCtxt | ( | const NTL::ZZX & | poly | ) |
Add a high-noise encryption of the given constant.
◆ bringToSet()
void helib::Ctxt::bringToSet | ( | const IndexSet & | s | ) |
make the primeSet equal to newPrimeSet, via modUpToSet and modDownToSet
◆ bumpNoiseBound()
|
inline |
◆ capacity()
|
inline |
returns the "capacity" of a ciphertext, which is the log of the ratio of the modulus to the noise bound
◆ cleanUp()
Ctxt & helib::Ctxt::cleanUp | ( | ) |
◆ clear()
|
inline |
◆ complexConj()
void helib::Ctxt::complexConj | ( | ) |
◆ cube()
|
inline |
◆ divideBy2()
void helib::Ctxt::divideBy2 | ( | ) |
◆ divideByP()
void helib::Ctxt::divideByP | ( | ) |
Divide a ciphertext by p, for plaintext space p^r, r>1. It is assumed that the ciphertext encrypts a polynomial which is zero mod p. If this is not the case then the result will not be a valid ciphertext anymore. As a side-effect, the plaintext space is reduced from p^r to p^{r-1}.
◆ dropSmallAndSpecialPrimes()
void helib::Ctxt::dropSmallAndSpecialPrimes | ( | ) |
the corresponding primeSet
drop all smallPrimes and specialPrimes, adding ctxtPrimes as necessary to ensure that the scaled noise is above the modulus-switching added noise term.
◆ DummyEncrypt()
void helib::Ctxt::DummyEncrypt | ( | const NTL::ZZX & | ptxt, |
double | size = -1.0 |
||
) |
Dummy encryption, just encodes the plaintext in a Ctxt object If provided, size should be a high-probability bound on the L-infty norm of the canonical embedding
◆ effectiveR()
|
inline |
◆ equalizeRationalFactors()
◆ equalsTo()
bool helib::Ctxt::equalsTo | ( | const Ctxt & | other, |
bool | comparePkeys = true |
||
) | const |
◆ evalPoly()
void helib::Ctxt::evalPoly | ( | const NTL::ZZX & | poly | ) |
compute the power X,X^2,...,X^n
Evaluate the cleartext poly on the encrypted ciphertext
◆ extractBits()
|
inline |
◆ frobeniusAutomorph()
void helib::Ctxt::frobeniusAutomorph | ( | long | j | ) |
applies the automorphism p^j using smartAutomorphism
◆ getContext()
|
inline |
◆ getKeyID()
long helib::Ctxt::getKeyID | ( | ) | const |
◆ getNoiseBound()
|
inline |
◆ getPrimeSet()
|
inline |
◆ getPtxtMag()
|
inline |
◆ getPtxtSpace()
|
inline |
◆ getPubKey()
|
inline |
◆ getRatFactor()
|
inline |
◆ hackPtxtSpace()
|
inline |
◆ inCanonicalForm()
|
inline |
A canonical ciphertext has (at most) handles pointing to (1,s)
◆ isCKKS()
|
inline |
◆ isCorrect()
|
inline |
Would this ciphertext be decrypted without errors?
◆ isEmpty()
|
inline |
Is this an empty ciphertext without any parts.
◆ log_of_ratio()
|
inline |
Returns log(noiseBound) - log(q)
◆ logOfPrimeSet()
|
inline |
returns the log of the prime set
◆ modDownToSet()
void helib::Ctxt::modDownToSet | ( | const IndexSet & | s | ) |
Modulus-switching down (to a smaller modulus). mod-switch down to primeSet \intersect s, after this call we have primeSet<=s. s must contain either all special primes or none of them.
◆ modSwitchAddedNoiseBound()
NTL::xdouble helib::Ctxt::modSwitchAddedNoiseBound | ( | ) | const |
Estimate the added noise.
◆ modUpToSet()
void helib::Ctxt::modUpToSet | ( | const IndexSet & | s | ) |
Modulus-switching up (to a larger modulus). Must have primeSet <= s, and s must contain either all the special primes or none of them.
◆ multByConstant() [1/5]
void helib::Ctxt::multByConstant | ( | const DoubleCRT & | dcrt, |
double | size = -1.0 |
||
) |
Multiply-by-constant. If the size is not given, for the DCRT variant, we use a high probability bound assuming "random" coefficients mod ptxtSpace, while for the other variants, we use explicitly computed bounds (if not CKKS).
◆ multByConstant() [2/5]
void helib::Ctxt::multByConstant | ( | const NTL::ZZ & | c | ) |
◆ multByConstant() [3/5]
void helib::Ctxt::multByConstant | ( | const NTL::ZZX & | poly, |
double | size = -1.0 |
||
) |
◆ multByConstant() [4/5]
|
inline |
◆ multByConstant() [5/5]
void helib::Ctxt::multByConstant | ( | const zzX & | poly, |
double | size = -1.0 |
||
) |
◆ multByConstantCKKS() [1/6]
void helib::Ctxt::multByConstantCKKS | ( | const DoubleCRT & | dcrt, |
NTL::xdouble | size = NTL::xdouble(-1.0) , |
||
NTL::xdouble | factor = NTL::xdouble(-1.0) , |
||
double | roundingErr = -1.0 |
||
) |
◆ multByConstantCKKS() [2/6]
|
inline |
◆ multByConstantCKKS() [3/6]
◆ multByConstantCKKS() [4/6]
void helib::Ctxt::multByConstantCKKS | ( | const std::vector< std::complex< double >> & | ptxt | ) |
◆ multByConstantCKKS() [5/6]
|
inline |
multiply by a rational number or floating point
◆ multByConstantCKKS() [6/6]
|
inline |
◆ multByP()
|
inline |
Multiply ciphertext by p^e, for plaintext space p^r. This also has the side-effect of increasing the plaintext space to p^{r+e}.
◆ multiplyBy()
void helib::Ctxt::multiplyBy | ( | const Ctxt & | other | ) |
◆ multiplyBy2()
◆ multLowLvl()
void helib::Ctxt::multLowLvl | ( | const Ctxt & | other, |
bool | destructive = false |
||
) |
◆ naturalPrimeSet()
IndexSet helib::Ctxt::naturalPrimeSet | ( | ) | const |
"natural size" is size before squaring
◆ naturalSize()
double helib::Ctxt::naturalSize | ( | ) | const |
◆ negate()
void helib::Ctxt::negate | ( | ) |
◆ nxorConstant() [1/2]
|
inline |
◆ nxorConstant() [2/2]
|
inline |
◆ operator!=()
|
inline |
◆ operator*=() [1/5]
◆ operator*=() [2/5]
Ctxt & helib::Ctxt::operator*= | ( | const long | scalar | ) |
Times equals operator with a long
.
- Parameters
-
scalar Constant by which to multiply.
- Returns
- Reference to
*this
post multiplication.
◆ operator*=() [3/5]
Ctxt & helib::Ctxt::operator*= | ( | const NTL::ZZX & | poly | ) |
Times equals operator with a ZZX
.
- Parameters
-
poly Element by which to multiply.
- Returns
- Reference to
*this
post multiplication.
◆ operator*=() [4/5]
◆ operator*=() [5/5]
◆ operator+=() [1/3]
◆ operator+=() [2/3]
◆ operator+=() [3/3]
◆ operator-=() [1/3]
◆ operator-=() [2/3]
◆ operator-=() [3/3]
◆ operator=()
◆ operator==()
|
inline |
◆ operator>>=()
|
inline |
◆ power()
void helib::Ctxt::power | ( | long | e | ) |
raise ciphertext to some power
◆ rawModSwitch()
double helib::Ctxt::rawModSwitch | ( | std::vector< NTL::ZZX > & | zzParts, |
long | toModulus | ||
) | const |
Special-purpose modulus-switching for bootstrapping.
Mod-switch to an externally-supplied modulus. The modulus need not be in the moduli-chain in the context, and does not even need to be a prime. The ciphertext *this is not affected, instead the result is returned in the zzParts std::vector, as a std::vector of ZZX'es. Returns an estimate for the scaled noise (not including the additive mod switching noise)
◆ read()
void helib::Ctxt::read | ( | std::istream & | str | ) |
◆ reducePtxtSpace()
void helib::Ctxt::reducePtxtSpace | ( | long | newPtxtSpace | ) |
Reduce plaintext space to a divisor of the original plaintext space.
◆ reLinearize()
void helib::Ctxt::reLinearize | ( | long | keyIdx = 0 | ) |
◆ setPtxtMag()
|
inline |
◆ smartAutomorph()
void helib::Ctxt::smartAutomorph | ( | long | k | ) |
automorphism with re-linearization
◆ square()
|
inline |
◆ write()
void helib::Ctxt::write | ( | std::ostream & | str | ) | const |
◆ xorConstant() [1/2]
|
inline |
Convenience method: XOR and nXOR with arbitrary plaintext space: a xor b = a+b-2ab = a + (1-2a)*b, a nxor b = 1-a-b+2ab = (b-1)(2a-1)+a
◆ xorConstant() [2/2]
|
inline |
Friends And Related Function Documentation
◆ BasicAutomorphPrecon
|
friend |
◆ operator<<
|
friend |
◆ operator>>
|
friend |
◆ PubKey
|
friend |
◆ SecKey
|
friend |