|
bool | operator== (const CtxtPart &other) const |
|
bool | operator!= (const CtxtPart &other) const |
|
| CtxtPart (const Context &_context, const IndexSet &s) |
|
| CtxtPart (const Context &_context, const IndexSet &s, const SKHandle &otherHandle) |
|
| CtxtPart (const DoubleCRT &other) |
|
| CtxtPart (const DoubleCRT &other, const SKHandle &otherHandle) |
|
void | read (std::istream &str) |
|
void | write (std::ostream &str) const |
|
| DoubleCRT (const DoubleCRT &other)=default |
|
| DoubleCRT (const NTL::ZZX &poly, const Context &_context, const IndexSet &indexSet) |
| Initializing DoubleCRT from a ZZX polynomial. More...
|
|
| DoubleCRT (const zzX &poly, const Context &_context, const IndexSet &indexSet) |
| Same as above, but with zzX's. More...
|
|
| DoubleCRT (const Context &_context, const IndexSet &indexSet) |
| Also specify the IndexSet explicitly. More...
|
|
DoubleCRT & | operator= (const DoubleCRT &other) |
|
DoubleCRT & | operator= (const zzX &poly) |
|
DoubleCRT & | operator= (const NTL::ZZX &poly) |
|
DoubleCRT & | operator= (const NTL::ZZ &num) |
|
DoubleCRT & | operator= (const long num) |
|
long | getOneRow (NTL::Vec< long > &row, long idx, bool positive=false) const |
| Get one row of a polynomial. More...
|
|
long | getOneRow (NTL::zz_pX &row, long idx) const |
|
void | toPoly (NTL::ZZX &p, const IndexSet &s, bool positive=false) const |
| Recovering the polynomial in coefficient representation. This yields an integer polynomial with coefficients in [-P/2,P/2], unless the positive flag is set to true, in which case we get coefficients in [0,P-1] (P is the product of all moduli used). Using the optional IndexSet param we compute the polynomial reduced modulo the product of only the primes in that set. More...
|
|
void | toPoly (NTL::ZZX &p, bool positive=false) const |
|
bool | operator== (const DoubleCRT &other) const |
|
bool | operator!= (const DoubleCRT &other) const |
|
DoubleCRT & | SetZero () |
|
DoubleCRT & | SetOne () |
|
NTL::xdouble | breakIntoDigits (std::vector< DoubleCRT > &dgts) const |
| Break into n digits,according to the primeSets in context.digits. See Section 3.1.6 of the design document (re-linearization) Returns the sum of the canonical embedding of the digits. More...
|
|
void | addPrimes (const IndexSet &s1, NTL::ZZX *poly_p=0) |
| Expand the index set by s1. It is assumed that s1 is disjoint from the current index set. If poly_p != 0, then *poly_p will first be set to the result of applying toPoly. More...
|
|
double | addPrimesAndScale (const IndexSet &s1) |
| Expand index set by s1, and multiply by Prod_{q in s1}. s1 is disjoint from the current index set, returns log(product). More...
|
|
void | removePrimes (const IndexSet &s1) |
| Remove s1 from the index set. More...
|
|
void | setPrimes (const IndexSet &s1) |
| @ brief make prime set equal to s1 More...
|
|
const Context & | getContext () const |
|
const IndexMap< NTL::vec_long > & | getMap () const |
|
const IndexSet & | getIndexSet () const |
|
void | randomize (const NTL::ZZ *seed=nullptr) |
| Fills each row i with random ints mod pi, uses NTL's PRG. More...
|
|
double | sampleSmall () |
| Coefficients are -1/0/1, Prob[0]=1/2. More...
|
|
double | sampleSmallBounded () |
|
double | sampleHWt (long Hwt) |
| Coefficients are -1/0/1 with pre-specified number of nonzeros. More...
|
|
double | sampleHWtBounded (long Hwt) |
|
double | sampleGaussian (double stdev=0.0) |
| Coefficients are Gaussians Return a high probability bound on L-infty norm of canonical embedding. More...
|
|
double | sampleGaussianBounded (double stdev=0.0) |
|
double | sampleUniform (long B) |
| Coefficients are uniform in [-B..B]. More...
|
|
NTL::xdouble | sampleUniform (const NTL::ZZ &B) |
|
void | scaleDownToSet (const IndexSet &s, long ptxtSpace, NTL::ZZX &delta) |
|
void | FFT (const NTL::ZZX &poly, const IndexSet &s) |
|
void | FFT (const zzX &poly, const IndexSet &s) |
|
void | reduce () const |
|
void | read (std::istream &str) |
|
void | write (std::ostream &str) const |
|
DoubleCRT & | Negate (const DoubleCRT &other) |
|
DoubleCRT & | Negate () |
|
DoubleCRT & | operator+= (const DoubleCRT &other) |
|
DoubleCRT & | operator+= (const NTL::ZZX &poly) |
|
DoubleCRT & | operator+= (const NTL::ZZ &num) |
|
DoubleCRT & | operator+= (long num) |
|
DoubleCRT & | operator-= (const DoubleCRT &other) |
|
DoubleCRT & | operator-= (const NTL::ZZX &poly) |
|
DoubleCRT & | operator-= (const NTL::ZZ &num) |
|
DoubleCRT & | operator-= (long num) |
|
DoubleCRT & | operator++ () |
|
DoubleCRT & | operator-- () |
|
void | operator++ (int) |
|
void | operator-- (int) |
|
DoubleCRT & | operator*= (const DoubleCRT &other) |
|
DoubleCRT & | operator*= (const NTL::ZZX &poly) |
|
DoubleCRT & | operator*= (const NTL::ZZ &num) |
|
DoubleCRT & | operator*= (long num) |
|
void | Add (const DoubleCRT &other, bool matchIndexSets=true) |
|
void | Sub (const DoubleCRT &other, bool matchIndexSets=true) |
|
void | Mul (const DoubleCRT &other, bool matchIndexSets=true) |
|
DoubleCRT & | operator/= (const NTL::ZZ &num) |
|
DoubleCRT & | operator/= (long num) |
|
void | Exp (long k) |
| Small-exponent polynomial exponentiation. More...
|
|
void | automorph (long k) |
| Apply the automorphism F(X) --> F(X^k) (with gcd(k,m)=1) More...
|
|
DoubleCRT & | operator>>= (long k) |
|
void | complexConj () |
| Compute the complex conjugate, the same as automorph(m-1) More...
|
|
One entry in a ciphertext std::vector.
A ciphertext part consists of a polynomial (element of the ring R_Q) and a handle to the corresponding secret-key polynomial.