helib::EncryptedArrayBase Class Referenceabstract

virtual class for data-movement operations on arrays of slots More...

#include <EncryptedArray.h>

Inheritance diagram for helib::EncryptedArrayBase:
helib::EncryptedArrayCx helib::EncryptedArrayDerived< type >

Public Member Functions

virtual ~EncryptedArrayBase ()
 
virtual EncryptedArrayBaseclone () const =0
 
virtual PA_tag getTag () const =0
 
virtual const ContextgetContext () const =0
 
virtual const PAlgebragetPAlgebra () const =0
 
virtual long getDegree () const =0
 
virtual long getP2R () const =0
 
virtual void rotate (Ctxt &ctxt, long k) const =0
 Right rotation as a linear array. E.g., rotating ctxt=Enc(1 2 3 ... n) by k=1 gives Enc(n 1 2 ... n-1) More...
 
virtual void shift (Ctxt &ctxt, long k) const =0
 Non-cyclic right shift with zero fill E.g., shifting ctxt=Enc(1 2 3 ... n) by k=1 gives Enc(0 1 2... n-1) More...
 
virtual void rotate1D (Ctxt &ctxt, long i, long k, bool dc=false) const =0
 right-rotate k positions along the i'th dimension More...
 
virtual void shift1D (Ctxt &ctxt, long i, long k) const =0
 Right shift k positions along the i'th dimension with zero fill. More...
 
virtual void buildLinPolyCoeffs (std::vector< NTL::ZZX > &C, const std::vector< NTL::ZZX > &L) const =0
 Linearized polynomials. L describes a linear map M by describing its action on the standard power basis: M(x^j mod G) = (L[j] mod G), for j = 0..d-1. The result is a coefficient std::vector C for the linearized polynomial representing M: a polynomial h in Z/(p^r)[X] of degree < d is sent to. More...
 
virtual void restoreContext () const
 
virtual void restoreContextForG () const
 
long size () const
 Total size (# of slots) of hypercube. More...
 
long dimension () const
 Number of dimensions of hypercube. More...
 
long sizeOfDimension (long i) const
 Size of given dimension. More...
 
bool nativeDimension (long i) const
 Is rotations in given dimension a "native" operation? More...
 
long coordinate (long i, long k) const
 returns coordinate of index k along the i'th dimension More...
 
long addCoord (long i, long k, long offset) const
 adds offset to index k in the i'th dimension More...
 
template<typename U >
void rotate1D (std::vector< U > &out, const std::vector< U > &in, long i, long offset) const
 rotate an array by offset in the i'th dimension (output should not alias input) More...
 
Encoding/decoding methods
virtual void encode (zzX &ptxt, const std::vector< long > &array) const =0
 
virtual void encode (NTL::ZZX &ptxt, const std::vector< long > &array) const =0
 
virtual void encode (zzX &ptxt, const std::vector< zzX > &array) const =0
 
virtual void encode (zzX &ptxt, const PlaintextArray &array) const =0
 
virtual void encode (NTL::ZZX &ptxt, const std::vector< NTL::ZZX > &array) const =0
 
virtual void encode (NTL::ZZX &ptxt, const PlaintextArray &array) const =0
 
void encode (zzX &ptxt, const std::vector< NTL::ZZX > &array) const
 
virtual void decode (std::vector< long > &array, const NTL::ZZX &ptxt) const =0
 
virtual void decode (std::vector< NTL::ZZX > &array, const NTL::ZZX &ptxt) const =0
 
virtual void decode (PlaintextArray &array, const NTL::ZZX &ptxt) const =0
 
virtual void random (std::vector< long > &array) const =0
 
virtual void random (std::vector< NTL::ZZX > &array) const =0
 
long decode1Slot (const NTL::ZZX &ptxt, long i) const
 
void decode1Slot (NTL::ZZX &slot, const NTL::ZZX &ptxt, long i) const
 
virtual void encodeUnitSelector (zzX &ptxt, long i) const =0
 Encodes a std::vector with 1 at position i and 0 everywhere else. More...
 
Encoding+encryption/decryption+decoding
template<typename PTXT >
void encrypt (Ctxt &ctxt, const PubKey &key, const PTXT &ptxt) const
 
virtual void decrypt (const Ctxt &ctxt, const SecKey &sKey, std::vector< long > &ptxt) const =0
 
virtual void decrypt (const Ctxt &ctxt, const SecKey &sKey, std::vector< NTL::ZZX > &ptxt) const =0
 
virtual void decrypt (const Ctxt &ctxt, const SecKey &sKey, PlaintextArray &ptxt) const =0
 
virtual void decrypt (const Ctxt &ctxt, const SecKey &sKey, std::vector< double > &ptxt) const =0
 
virtual void decrypt (const Ctxt &ctxt, const SecKey &sKey, std::vector< cx_double > &ptxt) const =0
 
long decrypt1Slot (const Ctxt &ctxt, const SecKey &sKey, long i) const
 
void decrypt1Slot (NTL::ZZX &slot, const Ctxt &ctxt, const SecKey &sKey, long i) const
 

Detailed Description

virtual class for data-movement operations on arrays of slots

An object ea of type EncryptedArray stores information about an Context context, and a monic polynomial G. If context defines parameters m, p, and r, then ea is a helper abject that supports encoding/decoding and encryption/decryption of std::vectors of plaintext slots over the ring (Z/(p^r)[X])/(G).

The polynomial G should be irreducible over Z/(p^r) (this is not checked). The degree of G should divide the multiplicative order of p modulo m (this is checked). Currently, the following restriction is imposed:

either r == 1 or deg(G) == 1 or G == factors[0].

ea stores objects in the polynomial ring Z/(p^r)[X].

Just as for the class PAlgebraMod, if p == 2 and r == 1, then these polynomials are represented as GF2X's, and otherwise as zz_pX's. Thus, the types of these objects are not determined until run time. As such, we need to use a class hierarchy, which mirrors that of PAlgebraMod, as follows.

EncryptedArrayBase is a virtual class

EncryptedArrayDerived<type> is a derived template class, where type is either PA_GF2 or PA_zz_p.

The class EncryptedArray is a simple wrapper around a smart pointer to an EncryptedArrayBase object: copying an EncryptedArray object results is a "deep copy" of the underlying object of the derived class.

Constructor & Destructor Documentation

◆ ~EncryptedArrayBase()

virtual helib::EncryptedArrayBase::~EncryptedArrayBase ( )
inlinevirtual

Member Function Documentation

◆ addCoord()

long helib::EncryptedArrayBase::addCoord ( long  i,
long  k,
long  offset 
) const
inline

adds offset to index k in the i'th dimension

◆ buildLinPolyCoeffs()

virtual void helib::EncryptedArrayBase::buildLinPolyCoeffs ( std::vector< NTL::ZZX > &  C,
const std::vector< NTL::ZZX > &  L 
) const
pure virtual

Linearized polynomials. L describes a linear map M by describing its action on the standard power basis: M(x^j mod G) = (L[j] mod G), for j = 0..d-1. The result is a coefficient std::vector C for the linearized polynomial representing M: a polynomial h in Z/(p^r)[X] of degree < d is sent to.

\[ M(h(X) \bmod G)= \sum_{i=0}^{d-1}(C[j] \cdot h(X^{p^j}))\bmod G). \]

Implemented in helib::EncryptedArrayDerived< type >.

◆ clone()

virtual EncryptedArrayBase* helib::EncryptedArrayBase::clone ( ) const
pure virtual

◆ coordinate()

long helib::EncryptedArrayBase::coordinate ( long  i,
long  k 
) const
inline

returns coordinate of index k along the i'th dimension

◆ decode() [1/3]

virtual void helib::EncryptedArrayBase::decode ( PlaintextArray array,
const NTL::ZZX &  ptxt 
) const
pure virtual

◆ decode() [2/3]

virtual void helib::EncryptedArrayBase::decode ( std::vector< long > &  array,
const NTL::ZZX &  ptxt 
) const
pure virtual

◆ decode() [3/3]

virtual void helib::EncryptedArrayBase::decode ( std::vector< NTL::ZZX > &  array,
const NTL::ZZX &  ptxt 
) const
pure virtual

◆ decode1Slot() [1/2]

long helib::EncryptedArrayBase::decode1Slot ( const NTL::ZZX &  ptxt,
long  i 
) const
inline

◆ decode1Slot() [2/2]

void helib::EncryptedArrayBase::decode1Slot ( NTL::ZZX &  slot,
const NTL::ZZX &  ptxt,
long  i 
) const
inline

◆ decrypt() [1/5]

virtual void helib::EncryptedArrayBase::decrypt ( const Ctxt ctxt,
const SecKey sKey,
PlaintextArray ptxt 
) const
pure virtual

◆ decrypt() [2/5]

virtual void helib::EncryptedArrayBase::decrypt ( const Ctxt ctxt,
const SecKey sKey,
std::vector< cx_double > &  ptxt 
) const
pure virtual

Implemented in helib::EncryptedArrayCx.

◆ decrypt() [3/5]

virtual void helib::EncryptedArrayBase::decrypt ( const Ctxt ctxt,
const SecKey sKey,
std::vector< double > &  ptxt 
) const
pure virtual

Implemented in helib::EncryptedArrayCx.

◆ decrypt() [4/5]

virtual void helib::EncryptedArrayBase::decrypt ( const Ctxt ctxt,
const SecKey sKey,
std::vector< long > &  ptxt 
) const
pure virtual

◆ decrypt() [5/5]

virtual void helib::EncryptedArrayBase::decrypt ( const Ctxt ctxt,
const SecKey sKey,
std::vector< NTL::ZZX > &  ptxt 
) const
pure virtual

◆ decrypt1Slot() [1/2]

long helib::EncryptedArrayBase::decrypt1Slot ( const Ctxt ctxt,
const SecKey sKey,
long  i 
) const
inline

◆ decrypt1Slot() [2/2]

void helib::EncryptedArrayBase::decrypt1Slot ( NTL::ZZX &  slot,
const Ctxt ctxt,
const SecKey sKey,
long  i 
) const
inline

◆ dimension()

long helib::EncryptedArrayBase::dimension ( ) const
inline

Number of dimensions of hypercube.

◆ encode() [1/7]

virtual void helib::EncryptedArrayBase::encode ( NTL::ZZX &  ptxt,
const PlaintextArray array 
) const
pure virtual

◆ encode() [2/7]

virtual void helib::EncryptedArrayBase::encode ( NTL::ZZX &  ptxt,
const std::vector< long > &  array 
) const
pure virtual

◆ encode() [3/7]

virtual void helib::EncryptedArrayBase::encode ( NTL::ZZX &  ptxt,
const std::vector< NTL::ZZX > &  array 
) const
pure virtual

◆ encode() [4/7]

virtual void helib::EncryptedArrayBase::encode ( zzX ptxt,
const PlaintextArray array 
) const
pure virtual

◆ encode() [5/7]

virtual void helib::EncryptedArrayBase::encode ( zzX ptxt,
const std::vector< long > &  array 
) const
pure virtual

◆ encode() [6/7]

void helib::EncryptedArrayBase::encode ( zzX ptxt,
const std::vector< NTL::ZZX > &  array 
) const
inline

◆ encode() [7/7]

virtual void helib::EncryptedArrayBase::encode ( zzX ptxt,
const std::vector< zzX > &  array 
) const
pure virtual

◆ encodeUnitSelector()

virtual void helib::EncryptedArrayBase::encodeUnitSelector ( zzX ptxt,
long  i 
) const
pure virtual

Encodes a std::vector with 1 at position i and 0 everywhere else.

Implemented in helib::EncryptedArrayCx, and helib::EncryptedArrayDerived< type >.

◆ encrypt()

template<typename PTXT >
void helib::EncryptedArrayBase::encrypt ( Ctxt ctxt,
const PubKey key,
const PTXT &  ptxt 
) const
inline

◆ getContext()

virtual const Context& helib::EncryptedArrayBase::getContext ( ) const
pure virtual

◆ getDegree()

virtual long helib::EncryptedArrayBase::getDegree ( ) const
pure virtual

◆ getP2R()

virtual long helib::EncryptedArrayBase::getP2R ( ) const
pure virtual

◆ getPAlgebra()

virtual const PAlgebra& helib::EncryptedArrayBase::getPAlgebra ( ) const
pure virtual

◆ getTag()

virtual PA_tag helib::EncryptedArrayBase::getTag ( ) const
pure virtual

◆ nativeDimension()

bool helib::EncryptedArrayBase::nativeDimension ( long  i) const
inline

Is rotations in given dimension a "native" operation?

◆ random() [1/2]

virtual void helib::EncryptedArrayBase::random ( std::vector< long > &  array) const
pure virtual

◆ random() [2/2]

virtual void helib::EncryptedArrayBase::random ( std::vector< NTL::ZZX > &  array) const
pure virtual

◆ restoreContext()

virtual void helib::EncryptedArrayBase::restoreContext ( ) const
inlinevirtual

◆ restoreContextForG()

virtual void helib::EncryptedArrayBase::restoreContextForG ( ) const
inlinevirtual

◆ rotate()

virtual void helib::EncryptedArrayBase::rotate ( Ctxt ctxt,
long  k 
) const
pure virtual

Right rotation as a linear array. E.g., rotating ctxt=Enc(1 2 3 ... n) by k=1 gives Enc(n 1 2 ... n-1)

Implemented in helib::EncryptedArrayCx, and helib::EncryptedArrayDerived< type >.

◆ rotate1D() [1/2]

virtual void helib::EncryptedArrayBase::rotate1D ( Ctxt ctxt,
long  i,
long  k,
bool  dc = false 
) const
pure virtual

right-rotate k positions along the i'th dimension

Parameters
dcmeans "don't care", which means that the caller guarantees that only zero elements rotate off the end – this allows for some optimizations that would not otherwise be possible

Implemented in helib::EncryptedArrayCx, and helib::EncryptedArrayDerived< type >.

◆ rotate1D() [2/2]

template<typename U >
void helib::EncryptedArrayBase::rotate1D ( std::vector< U > &  out,
const std::vector< U > &  in,
long  i,
long  offset 
) const
inline

rotate an array by offset in the i'th dimension (output should not alias input)

◆ shift()

virtual void helib::EncryptedArrayBase::shift ( Ctxt ctxt,
long  k 
) const
pure virtual

Non-cyclic right shift with zero fill E.g., shifting ctxt=Enc(1 2 3 ... n) by k=1 gives Enc(0 1 2... n-1)

Implemented in helib::EncryptedArrayCx, and helib::EncryptedArrayDerived< type >.

◆ shift1D()

virtual void helib::EncryptedArrayBase::shift1D ( Ctxt ctxt,
long  i,
long  k 
) const
pure virtual

Right shift k positions along the i'th dimension with zero fill.

Implemented in helib::EncryptedArrayCx, and helib::EncryptedArrayDerived< type >.

◆ size()

long helib::EncryptedArrayBase::size ( ) const
inline

Total size (# of slots) of hypercube.

◆ sizeOfDimension()

long helib::EncryptedArrayBase::sizeOfDimension ( long  i) const
inline

Size of given dimension.