virtual class for data-movement operations on arrays of slots More...
#include <EncryptedArray.h>

Public Member Functions | |
virtual | ~EncryptedArrayBase () |
virtual EncryptedArrayBase * | clone () const =0 |
virtual PA_tag | getTag () const =0 |
virtual const Context & | getContext () const =0 |
virtual const PAlgebra & | getPAlgebra () const =0 |
virtual long | getDegree () const =0 |
virtual long | getP2R () const =0 |
virtual void | rotate (Ctxt &ctxt, long k) const =0 |
Right rotation as a linear array. E.g., rotating ctxt=Enc(1 2 3 ... n) by k=1 gives Enc(n 1 2 ... n-1) More... | |
virtual void | shift (Ctxt &ctxt, long k) const =0 |
Non-cyclic right shift with zero fill E.g., shifting ctxt=Enc(1 2 3 ... n) by k=1 gives Enc(0 1 2... n-1) More... | |
virtual void | rotate1D (Ctxt &ctxt, long i, long k, bool dc=false) const =0 |
right-rotate k positions along the i'th dimension More... | |
virtual void | shift1D (Ctxt &ctxt, long i, long k) const =0 |
Right shift k positions along the i'th dimension with zero fill. More... | |
virtual void | buildLinPolyCoeffs (std::vector< NTL::ZZX > &C, const std::vector< NTL::ZZX > &L) const =0 |
Linearized polynomials. L describes a linear map M by describing its action on the standard power basis: M(x^j mod G) = (L[j] mod G), for j = 0..d-1. The result is a coefficient std::vector C for the linearized polynomial representing M: a polynomial h in Z/(p^r)[X] of degree < d is sent to. More... | |
virtual void | restoreContext () const |
virtual void | restoreContextForG () const |
long | size () const |
Total size (# of slots) of hypercube. More... | |
long | dimension () const |
Number of dimensions of hypercube. More... | |
long | sizeOfDimension (long i) const |
Size of given dimension. More... | |
bool | nativeDimension (long i) const |
Is rotations in given dimension a "native" operation? More... | |
long | coordinate (long i, long k) const |
returns coordinate of index k along the i'th dimension More... | |
long | addCoord (long i, long k, long offset) const |
adds offset to index k in the i'th dimension More... | |
template<typename U > | |
void | rotate1D (std::vector< U > &out, const std::vector< U > &in, long i, long offset) const |
rotate an array by offset in the i'th dimension (output should not alias input) More... | |
Encoding/decoding methods | |
virtual void | encode (zzX &ptxt, const std::vector< long > &array) const =0 |
virtual void | encode (NTL::ZZX &ptxt, const std::vector< long > &array) const =0 |
virtual void | encode (zzX &ptxt, const std::vector< zzX > &array) const =0 |
virtual void | encode (zzX &ptxt, const PlaintextArray &array) const =0 |
virtual void | encode (NTL::ZZX &ptxt, const std::vector< NTL::ZZX > &array) const =0 |
virtual void | encode (NTL::ZZX &ptxt, const PlaintextArray &array) const =0 |
void | encode (zzX &ptxt, const std::vector< NTL::ZZX > &array) const |
virtual void | decode (std::vector< long > &array, const NTL::ZZX &ptxt) const =0 |
virtual void | decode (std::vector< NTL::ZZX > &array, const NTL::ZZX &ptxt) const =0 |
virtual void | decode (PlaintextArray &array, const NTL::ZZX &ptxt) const =0 |
virtual void | random (std::vector< long > &array) const =0 |
virtual void | random (std::vector< NTL::ZZX > &array) const =0 |
long | decode1Slot (const NTL::ZZX &ptxt, long i) const |
void | decode1Slot (NTL::ZZX &slot, const NTL::ZZX &ptxt, long i) const |
virtual void | encodeUnitSelector (zzX &ptxt, long i) const =0 |
Encodes a std::vector with 1 at position i and 0 everywhere else. More... | |
Encoding+encryption/decryption+decoding | |
template<typename PTXT > | |
void | encrypt (Ctxt &ctxt, const PubKey &key, const PTXT &ptxt) const |
virtual void | decrypt (const Ctxt &ctxt, const SecKey &sKey, std::vector< long > &ptxt) const =0 |
virtual void | decrypt (const Ctxt &ctxt, const SecKey &sKey, std::vector< NTL::ZZX > &ptxt) const =0 |
virtual void | decrypt (const Ctxt &ctxt, const SecKey &sKey, PlaintextArray &ptxt) const =0 |
virtual void | decrypt (const Ctxt &ctxt, const SecKey &sKey, std::vector< double > &ptxt) const =0 |
virtual void | decrypt (const Ctxt &ctxt, const SecKey &sKey, std::vector< cx_double > &ptxt) const =0 |
long | decrypt1Slot (const Ctxt &ctxt, const SecKey &sKey, long i) const |
void | decrypt1Slot (NTL::ZZX &slot, const Ctxt &ctxt, const SecKey &sKey, long i) const |
Detailed Description
virtual class for data-movement operations on arrays of slots
An object ea of type EncryptedArray stores information about an Context context, and a monic polynomial G. If context defines parameters m, p, and r, then ea is a helper abject that supports encoding/decoding and encryption/decryption of std::vectors of plaintext slots over the ring (Z/(p^r)[X])/(G).
The polynomial G should be irreducible over Z/(p^r) (this is not checked). The degree of G should divide the multiplicative order of p modulo m (this is checked). Currently, the following restriction is imposed:
either r == 1 or deg(G) == 1 or G == factors[0].
ea stores objects in the polynomial ring Z/(p^r)[X].
Just as for the class PAlgebraMod, if p == 2 and r == 1, then these polynomials are represented as GF2X's, and otherwise as zz_pX's. Thus, the types of these objects are not determined until run time. As such, we need to use a class hierarchy, which mirrors that of PAlgebraMod, as follows.
EncryptedArrayBase is a virtual class
EncryptedArrayDerived<type> is a derived template class, where type is either PA_GF2 or PA_zz_p.
The class EncryptedArray is a simple wrapper around a smart pointer to an EncryptedArrayBase object: copying an EncryptedArray object results is a "deep copy" of the underlying object of the derived class.
Constructor & Destructor Documentation
◆ ~EncryptedArrayBase()
|
inlinevirtual |
Member Function Documentation
◆ addCoord()
|
inline |
adds offset to index k in the i'th dimension
◆ buildLinPolyCoeffs()
|
pure virtual |
Linearized polynomials. L describes a linear map M by describing its action on the standard power basis: M(x^j mod G) = (L[j] mod G), for j = 0..d-1. The result is a coefficient std::vector C for the linearized polynomial representing M: a polynomial h in Z/(p^r)[X] of degree < d is sent to.
Implemented in helib::EncryptedArrayDerived< type >.
◆ clone()
|
pure virtual |
Implemented in helib::EncryptedArrayCx, and helib::EncryptedArrayDerived< type >.
◆ coordinate()
|
inline |
returns coordinate of index k along the i'th dimension
◆ decode() [1/3]
|
pure virtual |
Implemented in helib::EncryptedArrayDerived< type >.
◆ decode() [2/3]
|
pure virtual |
Implemented in helib::EncryptedArrayDerived< type >.
◆ decode() [3/3]
|
pure virtual |
Implemented in helib::EncryptedArrayDerived< type >.
◆ decode1Slot() [1/2]
|
inline |
◆ decode1Slot() [2/2]
|
inline |
◆ decrypt() [1/5]
|
pure virtual |
Implemented in helib::EncryptedArrayDerived< type >.
◆ decrypt() [2/5]
|
pure virtual |
Implemented in helib::EncryptedArrayCx.
◆ decrypt() [3/5]
|
pure virtual |
Implemented in helib::EncryptedArrayCx.
◆ decrypt() [4/5]
|
pure virtual |
Implemented in helib::EncryptedArrayDerived< type >.
◆ decrypt() [5/5]
|
pure virtual |
Implemented in helib::EncryptedArrayDerived< type >.
◆ decrypt1Slot() [1/2]
|
inline |
◆ decrypt1Slot() [2/2]
|
inline |
◆ dimension()
|
inline |
Number of dimensions of hypercube.
◆ encode() [1/7]
|
pure virtual |
Implemented in helib::EncryptedArrayDerived< type >.
◆ encode() [2/7]
|
pure virtual |
Implemented in helib::EncryptedArrayDerived< type >.
◆ encode() [3/7]
|
pure virtual |
Implemented in helib::EncryptedArrayDerived< type >.
◆ encode() [4/7]
|
pure virtual |
Implemented in helib::EncryptedArrayDerived< type >.
◆ encode() [5/7]
|
pure virtual |
Implemented in helib::EncryptedArrayDerived< type >.
◆ encode() [6/7]
|
inline |
◆ encode() [7/7]
|
pure virtual |
Implemented in helib::EncryptedArrayDerived< type >.
◆ encodeUnitSelector()
|
pure virtual |
Encodes a std::vector with 1 at position i and 0 everywhere else.
Implemented in helib::EncryptedArrayCx, and helib::EncryptedArrayDerived< type >.
◆ encrypt()
|
inline |
◆ getContext()
|
pure virtual |
Implemented in helib::EncryptedArrayCx, and helib::EncryptedArrayDerived< type >.
◆ getDegree()
|
pure virtual |
Implemented in helib::EncryptedArrayCx, and helib::EncryptedArrayDerived< type >.
◆ getP2R()
|
pure virtual |
Implemented in helib::EncryptedArrayCx, and helib::EncryptedArrayDerived< type >.
◆ getPAlgebra()
|
pure virtual |
Implemented in helib::EncryptedArrayCx, and helib::EncryptedArrayDerived< type >.
◆ getTag()
|
pure virtual |
Implemented in helib::EncryptedArrayCx, and helib::EncryptedArrayDerived< type >.
◆ nativeDimension()
|
inline |
Is rotations in given dimension a "native" operation?
◆ random() [1/2]
|
pure virtual |
Implemented in helib::EncryptedArrayCx, and helib::EncryptedArrayDerived< type >.
◆ random() [2/2]
|
pure virtual |
Implemented in helib::EncryptedArrayDerived< type >.
◆ restoreContext()
|
inlinevirtual |
Reimplemented in helib::EncryptedArrayDerived< type >.
◆ restoreContextForG()
|
inlinevirtual |
Reimplemented in helib::EncryptedArrayDerived< type >.
◆ rotate()
|
pure virtual |
Right rotation as a linear array. E.g., rotating ctxt=Enc(1 2 3 ... n) by k=1 gives Enc(n 1 2 ... n-1)
Implemented in helib::EncryptedArrayCx, and helib::EncryptedArrayDerived< type >.
◆ rotate1D() [1/2]
|
pure virtual |
right-rotate k positions along the i'th dimension
- Parameters
-
dc means "don't care", which means that the caller guarantees that only zero elements rotate off the end – this allows for some optimizations that would not otherwise be possible
Implemented in helib::EncryptedArrayCx, and helib::EncryptedArrayDerived< type >.
◆ rotate1D() [2/2]
|
inline |
rotate an array by offset in the i'th dimension (output should not alias input)
◆ shift()
|
pure virtual |
Non-cyclic right shift with zero fill E.g., shifting ctxt=Enc(1 2 3 ... n) by k=1 gives Enc(0 1 2... n-1)
Implemented in helib::EncryptedArrayCx, and helib::EncryptedArrayDerived< type >.
◆ shift1D()
|
pure virtual |
Right shift k positions along the i'th dimension with zero fill.
Implemented in helib::EncryptedArrayCx, and helib::EncryptedArrayDerived< type >.
◆ size()
|
inline |
Total size (# of slots) of hypercube.
◆ sizeOfDimension()
|
inline |
Size of given dimension.