zzX.h
1 /* Copyright (C) 2012-2020 IBM Corp.
2  * This program is Licensed under the Apache License, Version 2.0
3  * (the "License"); you may not use this file except in compliance
4  * with the License. You may obtain a copy of the License at
5  * http://www.apache.org/licenses/LICENSE-2.0
6  * Unless required by applicable law or agreed to in writing, software
7  * distributed under the License is distributed on an "AS IS" BASIS,
8  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
9  * See the License for the specific language governing permissions and
10  * limitations under the License. See accompanying LICENSE file.
11  */
12 #ifndef HELIB_ZZX_H
13 #define HELIB_ZZX_H
14 
18 #include <NTL/vector.h>
19 #include <NTL/lzz_pX.h>
20 #include <NTL/GF2X.h>
21 
22 namespace helib {
23 
24 class PAlgebra;
25 typedef NTL::Vec<long> zzX;
26 
27 inline bool IsZero(const zzX& a) { return a.length() == 0; }
28 inline void clear(zzX& a) { a.SetLength(0); }
29 
30 inline void convert(NTL::zz_pX& x, const zzX& a)
31 {
32  NTL::conv(x.rep, a);
33  x.normalize();
34 }
35 
36 void add(zzX& res, const zzX& a, const zzX& b);
37 inline zzX operator+(const zzX& a, const zzX& b)
38 {
39  zzX tmp;
40  add(tmp, a, b);
41  return tmp;
42 }
43 inline zzX& operator+=(zzX& a, const zzX& b)
44 {
45  add(a, a, b);
46  return a;
47 }
48 
49 void div(zzX& res, const zzX& a, long b);
50 inline zzX operator/(const zzX& a, long b)
51 {
52  zzX tmp;
53  div(tmp, a, b);
54  return tmp;
55 }
56 inline zzX& operator/=(zzX& a, long b)
57 {
58  div(a, a, b);
59  return a;
60 }
61 
62 void mul(zzX& res, const zzX& a, long b);
63 inline zzX operator*(const zzX& a, long b)
64 {
65  zzX tmp;
66  mul(tmp, a, b);
67  return tmp;
68 }
69 inline zzX& operator*=(zzX& a, long b)
70 {
71  mul(a, a, b);
72  return a;
73 }
74 
75 void normalize(zzX& f);
76 
77 const NTL::zz_pXModulus& getPhimXMod(const PAlgebra& palg);
78 void reduceModPhimX(zzX& poly, const PAlgebra& palg);
79 
80 void MulMod(zzX& res, const zzX& a, const zzX& b, const PAlgebra& palg);
81 inline zzX MulMod(const zzX& a, const zzX& b, const PAlgebra& palg)
82 {
83  zzX tmp;
84  MulMod(tmp, a, b, palg);
85  return tmp;
86 }
87 
88 // these produce properly balanced residues, with randomization
89 // if necessary
90 zzX balanced_zzX(const NTL::zz_pX& f);
91 zzX balanced_zzX(const NTL::GF2X& f);
92 
93 } // namespace helib
94 
95 #endif // ifndef HELIB_ZZX_H
void mul(const EncryptedArray &ea, PlaintextArray &pa, const PlaintextArray &other)
Definition: EncryptedArray.cpp:1061
zzX balanced_zzX(const NTL::zz_pX &f)
Definition: zzX.cpp:122
NTL::Vec< long > zzX
Definition: zzX.h:24
bool IsZero(const zzX &a)
Definition: zzX.h:27
Tensor< T, 2 > operator*(const Tensor< T, 2 > &M1, const Tensor< T2, 2 > &M2)
Definition: Matrix.h:473
void normalize(zzX &f)
Definition: zzX.cpp:65
zzX & operator*=(zzX &a, long b)
Definition: zzX.h:69
IndexSet operator/(const IndexSet &s, const IndexSet &t)
set minus
Definition: IndexSet.cpp:256
zzX & operator/=(zzX &a, long b)
Definition: zzX.h:56
The structure of (Z/mZ)* /(p)
Definition: PAlgebra.h:77
void div(std::vector< NTL::ZZX > &x, const std::vector< NTL::ZZX > &a, long b)
Definition: NumbTh.cpp:1338
void clear(zzX &a)
Definition: zzX.h:28
void MulMod(NTL::ZZX &out, const NTL::ZZX &f, long a, long q, bool abs)
Definition: NumbTh.cpp:831
void reduceModPhimX(zzX &poly, const PAlgebra &palg)
Definition: zzX.cpp:111
Definition: apiAttributes.h:21
void add(const EncryptedArray &ea, PlaintextArray &pa, const PlaintextArray &other)
Definition: EncryptedArray.cpp:1005
void convert(long &x1, const NTL::GF2X &x2)
Definition: NumbTh.h:361
zzX & operator+=(zzX &a, const zzX &b)
Definition: zzX.h:43
zzX operator+(const zzX &a, const zzX &b)
Definition: zzX.h:37
const NTL::zz_pXModulus & getPhimXMod(const PAlgebra &palg)
Definition: zzX.cpp:79